PD Dr. Claus Metzner
- Job title: Theoretical Physics
- Working group: Biophysics Group
- Address:
Room 02.078 - Phone number: +49 9131 85-25613
- Email: claus.metzner@gmail.com
1997-01 Habilitation
1990-94 PhD
1989-90 Civil cervice
1987-89 Diploma
1983-87 Study of Physics
1983 Abitur
1964 Birth in Erlangen
2005-now: Privatdozent at Biophysics Group, University of Erlangen:
Statistical Methods for random walks, Network reconstruction from confocal image stacks, Individual and collective cell migration, Cell mechanics, Mechanics of random biopolymer networks, Biochemical reaction networks, Strain- and stress-field reconstruction, Animal Tracking, Application of Machine Learning methods to biophysical data, Neurophysics.
2001-04: Principal Investigator of independent research group, University of Erlangen:
Collective many-particle effects, Coherent Control, Relaxation Dynamics, Coupled nonlinear oscillators.
2000-01: Guest Scientist at University of California, Santa Barbara:
Many-particle effects in quantum dot molecules, Strain-induced localization of quantum states, Band-coupling effects, Coherent control.
1998: Guest Scientist at Institute for Materials Science in Electrical Engineering, University of Bochum:
Selfconsistent theory of electron states in compensation doped quantum wire systems.
1995-96: Guest Scientist at Quantum Microstructures Devices Laboratory, RCAST, University of Tokyo:
Exciton localization by surface roughness, Density dependent intersubband spectra in quantum wells, Potential fluctuations and Capacity spectra in quantum dot arrays.
1994-95: Postdoctoral Researcher at Institute of Technical Physics, University of Erlangen:
Donor-acceptor pair luminescence and localized states in modulation doped 2D systems.
o DFG grant for Principal Investigator position in Fabry Lab.
o DFG grant for Habilitation in US and Germany.
o Humboldt Foundation’s Feodor-Lynen grant for research in US.
o DFG grant for postdoctoral research in Japan.
o PhD with first rate honors.
o Diploma with rates 1.0 in Experimental, Theoretical, and Applied Physics.
Lecture series: Link to lecture scripts
Complex Systems (Critical phenomena, networks, evolutionary dynamics, reaction systems, traffic dynamics, socio/econo-physics, discrete and continuous dynamical systems, self-organization, game theory, information, neurophysics, machine learning)
Basic Courses:
Introduction to Physics (Up to 400 students; Responsible for exercises and exames; Covering all fields of physics; Self-developed course material)
Special lectures:
Impurities in semiconductors, Concepts of modern semiconductor physics, Coherent dynamics in semiconductor structures, Hot topics in modern science, Computational physics, Introduction to theoretical biophysics
Programming:
C++, Python
Languages:
German and English (fluid), Japanese (rudimental)
Music:
Piano, Keyboards, Jazz-Improvisation, Composition
Sports:
Windsurfing, Karate, Aikido, Fitness and strength training
Other:
Reading, Meditation, Mindfulness, Cooking, Blogging, Minimalism
Complex systems:
Are there general mechanisms behind the emergence of collective system properties ? How can the key parameters be identified that control the collective behavior in complex, non-linear systems ?
Biophysics:
How can individual and collective cell migration be modeled as a stimulus-response problem, in which the cells continuously react on their changing local micro-environment by adopting their migration behavior accordingly ?
Neurophysics:
How to (automatically) construct a course-grained description of neural networks ? How does (deep) learning work ? How does the statistics of neural connection weights change during network training ? How can the learning rate of neural networks be improved ? What is the structure of the ‘loss function landscape’ in neural networks ?
Statistical Methods:
How to analyze and model systems with time- and space-varying statistics ? How to detect and characterize higher-order, non-linear correlations in complex data ?
Machine Learning and AI:
How can machine learning be applied to scientific problems so that it actually helps to understand the investigated systems ? Can the ‘blind’, gradient-based optimization of model parameters be replaced by a more intelligent, human-like way of model improvement ?
Click here for a complete publication list.
Master’s and PhD thesis:
Jonas | Rietsch | Sleep Stage Classification using Neural Networks |
Verena | Dietrich | Impact of three-node motifs on the dynamics of neural networks |
Marc | Schuster | Synaptic Weight Statistics controls Dynamics in Artificial Neural Networks |
Wolfgang | Billenstein | Inferring network structure from spike trains and the dynamics of learning |
Nico | Wunderling | Dependence of cell migration and proliferation on cell density |
Julian | Uebelacker | Bayesian inference and quantitative prediction of collective behaviour in planar cell colonies |
Andreas | Rowald | The role of the noradrenergic pathway in restoration of locomotion after spinal cord injury |
Tobias | Denzler | Structure dependent translocation of polypeptide chains |
Christian | Schuetz | Biologically plausible neuronal feedback-loop for adaptive stochastic resonance |
Florian | Martin | Simulation of Planar Cell Colony Growth |
Arne | Monsees | Simulation of Force Transmission in Filamentous Polymer Networks |
Christoph | Mark | Statistical analysis of heterogeneous cell migration |
Patrick | Krauss | Modelling of emergent behavior in single and collective tumor cell dynamics |
Kai | Skodzek | Lokale Eigenschaften von Kollagen |
Janina | Lange | Collective migration during the growth of mesenchymal and epithelial cell colonies |
Richard | Gerum | Mechanical plasticity of cells |
Franz | Stadler | Stochastische Modelle zur Beschreibung der anomalen Bewegungsstatistik migrierender Tumorzellen |
Max | Sajitz-Hermstein | Stochastische Modelle fraktionaler Bewegungsvorgaenge im lebenden Zytoskelett |
Carina | Raupach | On the spontaneous motion of cytoskeletally bound markers |
Arthur | Franz | Evolution geregelter chemischer Netzwerke |
Bachelor’s thesis:
Alexandra | Zankl | Analysis of three-node network motifs |
Jacob | Szkaradzinski | Autokorrelationszeiten in neuronalen Netzwerken in Abhaengigkeit von Motiven |
Barbara | Feulner | Analysis of cell trajectories with Restricted Boltzmann Machines |
Andreas | Kronwald | The Cluster Model of Tumor Cell Invasion |
Wolfram | Barfuss | Thermal model of penguin huddling dynamics |
Andreas | Horlbeck | Zeitreihenanalyse von Zufallsprozessen mit nicht-konstanten Parametern |
Richard | Gerum | Modellierung des Huddling-Verhaltens von Pinguinen mittels Multi-Agenten-Simulation |
Achim | Schilling | Dynamik des Bindungsverhaltens des Adhaesionsapparates lebender Zellen |
Patrick | Krauss | Rekonstruktion dreidimensionaler Fasernetzwerke aus konfokalen Mikroskopaufnahmen |
Janina | Lange | Bestimmung der Porengroessenstatistik von Kollagengelen anhand konfokaler Mikroskopaufnahmen |
Mykhaylo | Flipenko | Analytische Untersuchung von Zellmigrationsmodellen |
Alexander | Heinz | Numerische Analyse der Zellmigration in Kollagengewebe |
Shorter projects:
Johannes | Dieplinger | Migration patterns of immune cells in the vicinity of tumor cells – a superstatistical analysis |
Torsten | Weber | Einfluss von Rauschen auf die Lern- und Leistungsfähigkeit rekurrenter neuronaler Netzwerke |
Kevin | Hoellring | Rekonstruktion geometrischer Objekte aus Bildern durch fehler-basierte Modell-Optimierung |
Maximilian | Duell | Modelling the dependence of cell migration on the density of adhesion ligands |
Thomas | Kipf | The shear response of visco-elastic fibers with bending stiffness |
Michael | Schmidberger | Statistical fluctuations in covalent modification cycles |
Anja | Michl | Selfpropelled agents in random potential landscapes |
Sebastian | Probst | Collective invasion of cells into complex tissue |
Sascha | Maisel | Modelling of cytoskeletal dynamics |
Richard | Gerum | Kraftausbreitung im Fasernetzwerk |
Mykhaylo | Flipenko | Analytische Untersuchung von Zellmigrationsmodellen |
Alexander | Heinz | Numerische Analyse der Zellmigration in Kollagengewebe |
Delocalized:
Email: claus.metzner@gmail.com
Mobile: +49 (0)176 444 216 36
University:
ZMPT, Room 02.078
Henkestr. 91
91052 Erlangen
Germany
Phone: +49 (0)9131 852 5615
Fax: +49 (0)9131 852 5601
Private:
Schleifmuehlstr. 6
91054 Erlangen
Germany
Phone: +49 (0) 9131 973037