Silicone-Based Lubricant-Infused Slippery Coating Covalently Bound to Aluminum Substrates for Underwater Applications

Lucia H. Prado, David Böhringer, Anca Mazare, Lamborghini Sotelo, George Sarau, Silke Christiansen, Ben Fabry, Patrik Schmuki, Sannakaisa Virtanen, Wolfgang H. Goldmann,* and Alexander B. Tesler*

Cite This: https://doi.org/10.1021/acsami.3c04508

ABSTRACT: Wetting of solid surfaces is crucial for biological and industrial processes but is also associated with several harmful phenomena such as biofouling and corrosion that limit the effectiveness of various technologies in aquatic environments. Despite extensive research, these challenges remain critical today. Recently, we have developed a facile UV-grafting technique to covalently attach silicone-based coatings to solid substrates. In this study, the grafting process was evaluated as a function of UV exposure time on aluminum substrates. While short-time exposure to UV light results in the formation of lubricant-infused slippery surfaces (LISS), a flat, nonporous variant of slippery liquid-infused porous surfaces, longer exposure leads to the formation of semi-rigid cross-linked polydimethylsiloxane (PDMS) coatings, both covalently bound to the substrate. These coatings were exposed to aquatic media to evaluate their resistance to corrosion and biofouling. While the UV-grafted cross-linked PDMS coating effectively inhibits aluminum corrosion in aquatic environments and allows organisms to grow on the surface, the LISS coating demonstrates improved corrosion resistance but inhibits biofilm adhesion. The synergy between facile and low-cost fabrication, rapid binding kinetics, eco-friendliness, and nontoxicity of the applied materials to aquatic life combined with excellent wetting-repellent characteristics make this technology applicable for implementation in aquatic environments.

KEYWORDS: lubricant-infused slippery surfaces, polydimethylsiloxane, corrosion resistance, anti-biofouling, biofilms, UV-grafting, cross-linking

1. INTRODUCTION

The oceans that cover ∼70% of the surface of our planet are in constant motion due to wind, the moon, and the planet’s rotation, temperature, and salinity differences.1 While such endless movements provide food and oxygen to aquatic life and move ships across the ocean,2 they are also regarded as a green, renewable, and reliable source of energy around the world. However, the potential of the ocean as one of the greatest sources of energy is under-explored compared to other green alternatives.3 This is because the aquatic environment is extremely challenging due to (i) the high concentration of ions such as chlorine, which leads to increased corrosion of metals, and (ii) the accumulation of aquatic organisms on solid surfaces, i.e., biofouling, which degrades the desired functionality of devices.

Among the available engineering materials, aluminum (Al) is one of the most widely used structural metals in marine applications due to its lightweight, high strength, good corrosion resistance, easy recyclability, extrudability, and weldability for design flexibility. Today, it is used in fast ferries, wave-piercing catamarans, cruise ships, as well as offshore oil drilling rigs, deep submersible vessels, and helicopter landing pads, to name but a few,4 in its pure form or as an alloy to adjust the mechanical and corrosion properties.5,6 It is common knowledge that Al is susceptible to corrosion. Under mild conditions (e.g., the near-neutral pH range of many aqueous solutions), Al exhibits stable passivity and, hence, very low corrosion rates.7,8 However, under more aggressive conditions, Al can corrode severely.9 The most common type of corrosion is pitting, which occurs in the presence of chloride ions.10 In addition to direct corrosion-related structural failures of constructions, this results in the release of Al ions into the marine environment, which can be toxic to aquatic life.11

However, it is well known that Al is neither required in biological systems nor involved in any essential biological processes.12 Nevertheless, all living organisms today contain some aluminum due to its abundance in the Earth’s crust. On the contrary, there are known biological effects of Al, most of which are negative.13 The toxicity of Al is closely related to pH, as the metal is soluble and biologically available in acidic (pH <
In this study, we fabricated a UV-grafted PDMS coating on aluminum to simultaneously investigate the resistance of the UV-grafted PDMS coatings to corrosion and biofouling in aquatic environments. Corrosion of metallic substrates can deteriorate the stability of the infused lubricant, increase its depletion, and ultimately lead to coating failure. This is because metal oxides have a high surface energy, which makes them significantly less attractive for wetting by low surface tension liquids such as lubricants, which is contrary to the basic requirement for liquid-infused surfaces. First, the LISS coating was fabricated according to our previously reported process. Then, the UV exposure time was extended to achieve a cross-linked PDMS (CL-PDMS) coating. In both cases, PDMS is covalently grafted onto the substrate. The corrosion protection of the UV-grafted coating was investigated by potentiodynamic polarization curves measured in an aqueous electrolyte containing 3.5 wt % NaCl and by long-term immersion in freshwater and seawater media. Finally, the UV-grafted and bare aluminum samples were exposed to aquatic organisms such as freshwater algae and seawater diatoms, the latter known as early colonizers.

We show that the LISS coating is effective in preventing biofouling adhesion, while the CL-PDMS is superior in corrosion protection of Al in aquatic environments.

2. EXPERIMENTAL SECTION

2.1. Materials. Aluminum 1000-grade sheets of 1 mm thickness (99.5% Al) were purchased from Advant Research Materials, UK. Polydimethylsiloxane (PDMS, silicone oil) with a viscosity of 500 cSt (\(M_n = 17.3\) kDa), ethanol, acetone, and toluene were purchased from Carl Roth, Germany, and used as received. Deionized water with a specific resistance of 18.2 MΩ cm was used in all experiments.

2.2. Fabrication of UV-Grafted PDMS Coatings. Aluminum sheets were cut into 25 × 25 × 1 mm size specimens and used as substrates. The substrates were first ground with a SiC abrasive paper up to 1200 grit. The substrates were then ultrasonically degreased in acetone and ethanol for 10 min and then dried under a stream of \(N_2\). These samples were placed horizontally in a glass Petri dish under a quartz cover and covered with approx. 20 μL cm\(^{-2}\) of silicone oil (PDMS) pipetted to cover the entire sample surface. The samples were then illuminated using a medium-pressure ultraviolet (UV) (Hg) lamp at 1 kW (UVAPRINT HPV, Hönle AG, Germany) at a working distance of 30 cm. The emission maxima of this type of lamp are in the UV range, i.e., \(\lambda = 320\) and 365 nm. A power density at the working distance of \(\sim 100\) mW cm\(^{-2}\) at \(\lambda = 320\) nm was measured using a Newport 1830-C optical power meter equipped with an 818-UV/DB optical power detector and a 1% Newport ND filter. The PDMS-coated substrates were illuminated for either 30 or 180 min to form the LISS or CL-PDMS coating, respectively.

2.3. Measurement of Cross-Linking Percentage. To estimate the portion of cross-linking, the ASTM D2765-16 standard procedure was applied. Here, the 50 × 50 mm CL-PDMS on Al substrates were soaked in toluene for 24 h at room temperature to dissolve unbound silicone oil. Then, the samples were dried under vacuum for 12 h at room temperature, followed by heat treatment at 100 °C in a vacuum oven for 4 h. The cross-linked UV-grafted samples were weighed before and after the soaking/dissolution/drying process, and the percentage of cross-linking was obtained as follows:

\[
\% \text{ cross-linking} = \left(\frac{W_1 - W_2}{W_1} \right) \times 100\%
\]

where \(W_1\) and \(W_2\) are the masses of the samples before and after the soaking/dissolving/drying process.

2.4. Contact Angle and Hysteresis Measurements. Apparent water contact angle (WCA) measurements were carried out using a DSA100 contact angle goniometer (KRUS, Germany). A small drop was deposited on the surface, and the volume was increased to \(\sim 10\) μL, and then the WCA was measured using the Laplace–Young model for a sessile droplet. For contact angle hysteresis (CAH), the
A drop volume of 20 μL was increased and decreased at a rate of 0.05 μL s⁻¹ under video recording. Fitting was performed using the Ellipse method (Tangent-1) using the KRUSS Drop Shape Analysis software. It should be noted that the calculated values obtained by the Ellipse fitting algorithm for CAH are lower than those calculated by the Laplace−Young fitting algorithm for the apparent contact angle; therefore, only the difference between the advancing and receding CAs should be considered as a CAH (not the absolute calculated value). All values given in the text were averaged from at least three independent measurements.

2.5. Attenuated Total Reflectance Fourier Transform Infra-red Spectroscopy Measurements. A Jasco FT/IR-4700 spectrometer (Tokyo, Japan), equipped with a Jasco ATR-PRO ONE attachment, a single-bounce ATR with a monolithic diamond, was used. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra were recorded in the range of 6000−2200 cm⁻¹ with 64 scans and a resolution of 1 cm⁻¹. Air was measured immediately before the sample and used as a background. In the case of pure silicone oil, a volume of 10 μL was dropped directly onto the diamond crystal.

2.6. Raman Spectroscopy Measurements. A LabRam HR800 spectrometer from Horiba was used in a backscattering geometry under ambient room temperature conditions. An excitation wavelength of 532 nm was used paired with a 50x long working distance objective (NA 0.55, Leica), a grating of 300 lines mm⁻¹, and a laser power of 6 mW to avoid material damage and molecular changes. Power dependence tests were performed to explore the optimal measurement conditions prior to data acquisition. A set of 3 maps, each consisting of 6561 measurement points, was obtained on both planar PDMS and CL-PDMS samples, resulting in statistically significant mean Raman spectra.

2.7. Potentiodynamic Polarization and Long-Term Immersion Tests. Corrosion experiments were performed in a 3.5 wt % NaCl aqueous electrolyte with a three-electrode configuration, using the sample as the working electrode, a platinum electrode as the counter electrode, and a HydroFlex hydrogen reference electrode. The samples, used for potentiodynamic polarization, were coated with a Bonderite S-MA 527 HT resin (Henkel AG & Co, Germany) exposing an area of ∼1.5 cm², which was subsequently coated with either the LISS or CL-PDMS. The sample, coated with a Bonderite S-MA 527 HT resin, was in contact with the electrolyte through a circular O-ring sealed opening in the cell wall, contacting only the resin and not with the PDMS-coated surface, exposing a circular area of 20 mm in diameter. For each sample, open-circuit potential (OCP) measurements (Zahner Zennium Electrochemical Workstation) were performed until a stable OCP value was reached, followed by potentiodynamic polarization from −100 mV vs the OCP until 0.3 V vs the reference electrode at a scanning rate of 1 mV s⁻¹. Long-term corrosion resistance measurements were performed by immersing bare, LISS, and CL-PDMS Al substrates in fresh and artificial seawater media in a Petri dish in an ambient atmosphere. Digital and bright-field optical microscopy images were taken after 85 and 143 days of immersion.
immersion, and the samples were returned to aquatic media for further evaluation of the extent of corrosion resistance.

2.8. Freshwater Green Algae Laboratory Assay. The stock solution of the green algae *Chlamydomonas reinhardtii* (C. reinhardtii, CCAP #1132B) was purchased from the Scottish Association for Marine Science (CCAP) and used as a model organism to study biofilm adhesion on LISS and CL-PDMS surfaces. *C. reinhardtii* was grown in a 3N-BBM+V medium solution (CCAP FA3N-C) under nonaxenic conditions. The stock culture solution was placed under a fluorescent daylight lamp (Philips TSHO) fixture and grown continuously with 16/8 h on/off light cycles at room temperature (18–20 °C) under rocking conditions.

2.9. Seawater Diatom Laboratory Assay. The seawater diatom of the type *Odontella aurita* (O. aurita, CCAP, #1054/1) purchased from the Scottish Association for Marine Science (CCAP) was used as a model organism to study biofilm adhesion on LISS and control samples. *O. aurita* was grown in an f/2+Si seawater medium (CCAP, Guillard’s medium for diatoms) under nonaxenic conditions. Stock culture solutions were placed under a fluorescent light (Philips TL5HO) fixture at room temperature (18–20 °C) and grown continuously with 16/8 h on/off light cycles under rocking conditions. Seawater was prepared as described in the literature.

2.10. Morphology and Physicochemical Characterization. A field-emission scanning electron microscope (Hitachi FE-SEM S4800) equipped with an energy-dispersive X-ray spectrometer (Genesis, Oxford Instruments) was used for morphological characterization. The composition and the chemical state of the films were characterized using X-ray photoelectron spectroscopy (XPS, PHI 600, US), and the spectra were shifted according to the Al 2p metal peak at 72.7 eV, and the peaks were fitted using a PHI MultiPak software (symmetrical peak shape, except for Al metal). Depth profiling was carried out using the instrument’s Ar⁺ sputter source operated at 3 kV and 15 nA, rastered over a 3 × 3 mm² area at a sputtering angle of 45° to the surface. Sputtering steps of 1 min were repeated until the Al substrate was reached. The atomic composition was determined between successive sputtering intervals by evaluating the photoelectron peak area using a PHI MultiPak processing software. The sputtering rate was calibrated using commercial Si/SiO₂ wafers (3 inch Si(100) p-type with 100 nm SiO₂, µChemicals, Germany) and was found to be 2 nm min⁻¹.

2.11. Biofouling Experiments. Bare polished, LISS, and CL-PDMS Al samples were placed horizontally in a 10 cm diameter polystyrene Petri dish with three samples of 2.5 × 2.5 cm each per dish. Freshwater green algae and seawater diatoms were used to examine biofilm retention on all surfaces. The stock solution was diluted 1:5 with the appropriate growth medium. The surface of each sample was then covered with ~80 mL of culture medium (~1 cm thick above the substrate surface). All the samples were incubated at ~20–23 °C (room temperature) for 8 days with 16/8 h on/off illumination to allow for proper biofilm growth. After 8 days, the samples were photographed and then pulled out of the culture medium at a controlled rate of 0.5 mm s⁻¹ using a dip coater (RDC15, Bungard, Germany). Treated substrates were photographed immediately after removal from the culture to avoid biofilm retraction. The images were then analyzed using ImageJ to assess the residual biofilm coverage after the air–water interface transition. Triplicates were used for all biofouling experiments. In addition, images were captured by confocal microscopy (Leica, Wetzlar, Germany), bright-field optical microscopy (Nikon, Japan), and SEM (Hitachi, Japan).

2.12. Evaluation of the Surface Coverage by Fluorescence Confocal Microscopy. Algae and diatoms on the material surface were imaged using an upright laser-scanning confocal microscope (SPS, Leica, Wetzlar) equipped with a 10x objective (PL FLUOTAR, Leica, Wetzlar). For each material condition, the auto-fluorescence signal of algae or diatoms was recorded at 9−10 random surface positions (area of 590 × 590 μm with a voxel size of 0.6 μm per pixel). For each position, the area covered by algae and diatoms was segmented based on a uniform intensity threshold. The fraction of the area covered was then determined as the area covered by algae/ diatoms divided by the total area.

3. RESULTS AND DISCUSSION

Figure 1a shows a schematic representation of the UV-grafting process of PDMS (i.e., silicone oil) used to convert 1000-grade Al surfaces into either LISS or CL-PDMS coatings. Prior to UV-grafting, the substrates were ground to ensure the same surface roughness for all samples, and particularly for corrosion characterization, although the coating can be applied equally well to polished or rough surfaces regardless of their roughness characteristics. The formation process is simple, inexpensive, and easily scalable. The samples were placed horizontally in a glass Petri dish, and then, droplets of trimethylsiloxy-terminated silicone oil (PDMS) were added to spread over the entire substrate surface. In this study, PDMS with a kinematic viscosity of 500 cSt ($M_w = 17.3$ kDa) was used. The setup was then illuminated with a medium-pressure mercury UV lamp at different times.

The typical spectrum of a light source is presented in Figure S1, Supporting Information. As shown, the most intense peaks in the UVA region correspond to $\lambda = 320$ and 365 nm. As we have previously shown, the 321 nm wavelength is the minimum required to dissociate the trimethylsilyl bonds of the PDMS terminal groups. Other bonds, such as Si–O or even the backbone Si–CH₃, require higher energy photons, i.e., a lower wavelength, to ensure that there is a higher probability of preferentially dissociating the Si–CH₃ terminal bonds when using this source of UV irradiation. The UV-grafting process was previously tested on various metals and oxides, while the LISS samples were thoroughly washed in toluene to dissolve the remaining, nongrafted silicone oil, leaving only covalently bound PDMS molecules. It was shown that the surface was completely and homogeneously covered with covalently bound PDMS molecules.

To verify covalent bonding of PDMS molecules to Al substrates, a water contact angle (WCA) and X-ray photoelectron spectroscopy (XPS) were applied. Bare Al substrates are hydrophilic and exhibit a WCA of $74.0° ± 0.2°$. Note that Al is considered a high surface energy material with a low WCA due to the formation of a native oxide layer. Here, such a relatively high WCA is due to hydrophobic contaminants, well in agreement with the literature, while the high-resolution XPS measurements support the adventitious carbon signature typical of airborne contamination (Figure S2, Supporting Information). To form the LISS coating, Al samples were exposed to UV light for 30 min. The UV light partially dissociates silicone oil and covalently grafts it to the substrate, while the remaining nondissociated PDMS molecules are considered to be an infusing lubricant. The stability of LISS is ensured by matching the surface tension of the residual silicone oil with the surface energy of Al, which is composed of the same but covalently grafted PDMS molecules. The LISS Al samples show a WCA and CA hysteresis (CAH) of 100.9° ± 3.9° and 0.9° ± 0.5°, respectively (Figure 1a, top inset images), due to the liquid nature of the infused lubricant, i.e., the formation of the atomically smooth liquid surface typical for SLIPS/LISS.

To investigate the chemical composition and surface coverage of the UV-grafted PDMS layer on Al substrates, angle-resolved XPS analysis was performed at incident angles of 15°, 45°, and 75°, i.e., the detection depth changes due to the sample tilt angle. Silicone oil was UV-grafted to polished Al substrates, and the remaining oil was dissolved in toluene. The typical XPS survey spectra of these samples are shown in...
with a binding energy of 102.64 eV, which was deconvoluted into two components at 102.61 and 103.51 eV corresponding to Si–C and Si–O bonds, respectively (Figures S3b, Supporting Information). The high-resolution Si 2p XPS spectrum consists of a single peak with a binding energy of 102.64 eV, which was deconvoluted into two components at 102.61 and 103.51 eV corresponding to Si–C and Si–O bonds, respectively (Figure 1b). The O 1s spectra with the peak centered at 532.80 eV consist of three components: at 532.73 eV corresponding to the Si–O–Si bond (89.8%) and at 531.53 and 534.13 eV corresponding to the Al–O–Si (5.3%) and Al–OH (4.9%) bonds, respectively. When measured at an angle of 75°, the components corresponding to the substrate, Al–O–Si and Al–OH, increase slightly to 13.3 and 7.0%, respectively. The XPS peak of Al 2p was clearly observed at 457.9 eV and its oxide (in the case of metallic Al, the peaks are asymmetric and the splitting of the 2p peak is evident with a spin separation of 0.44 eV, while the oxide has a symmetrical peak and the splitting can typically be ignored). The C 1s spectra show a single peak at 285.10 eV, which is associated with Si–C bonds (284.49 eV, 16.5%) and C–H bonds (285.19 eV, 82.5%) in PDMS, as well as small amounts of C=O bonds (286.74 eV, 0.9%) (Figure 1e). The XPS sputter profiles of the UV-grafted PDMS on Al substrates demonstrate the thickness of the grafted layer to be ~10 nm, which is in good agreement with our previous results obtained on Si wafers (Figure 1f).

However, when the Al samples with silicone oil were exposed to UV irradiation for a longer time, i.e., 180 min, cross-linking of PDMS was observed. In this case, the coating appears as a thin semi-rigid layer in contrast to its liquid-like LISS counterparts (Figure 1g). The thickness of the CL-PDMS layer varies from tens to hundreds of microns as a function of the initial silicone oil volume dispersed (Figure S6, Supporting Information). The UV-grafted CL-PDMS layer has a CA and CAH of 98.7° ± 4.2° and 8.6° ± 4.8°, respectively (Figure 1a, bottom inset images).

Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and Raman spectroscopy analyses were performed on polished Al, plain PDMS, LISS, and CL-PDMS to study the time dependence of the UV-grafting process on Al. The FTIR spectra in the wave number range of 250–4000 cm⁻¹ are shown in Figure 2a. The peaks at 1258, 1065, 1011, and 788 cm⁻¹ are the fingerprint for silicone oil. The two PDMS peaks at 1258 and 788 cm⁻¹ are due to CH₂ deformation and CH₃ rocking in Si–CH₃, respectively, and the two adjacent peaks at 1065 and 1011 cm⁻¹ are due to Si–O–Si asymmetric deformation (Figure 2b). The peaks at 856 and 900 cm⁻¹ in the CL-PDMS spectrum can be assigned to Si–O–Al bonds (Figure 2b, blue spectrum). Figure 2c shows the symmetric and asymmetric CH₃ stretching peaks at 2962 and 2906 cm⁻¹, respectively. A reduction in the peak intensity at 2962 cm⁻¹ and a shift to 2963 cm⁻¹ were observed in CL-PDMS. Such a shift of the methylene vibrations is generally believed to reflect an increase in the intermolecular interactions, improved long-range order, and, consequently, crystallinity of the PDMS layer.

Raman spectroscopy shows a typical spectrum of plain silicone oil with the repeating unit of (Si(CH₃)₂)–O– (Figure 2d). The intense peaks at 2965 and 2906 cm⁻¹ in plain silicone oil correspond to the stretching modes of the CH₃ group, 1411 cm⁻¹ (CH₂ asymmetric bending), 1260 cm⁻¹ (CH₃ symmetric bending), and 862 (CH₃ symmetric rocking), 788 (CH₃ asymmetric rocking and Si–C asymmetric stretching), and 708 cm⁻¹ (Si–C symmetric stretching) modes. The peak at 688 cm⁻¹ is assigned to the Si–CH₃ symmetric rocking mode, and the peak at 489 cm⁻¹ corresponds to the Si–O–Si stretching mode. Upon cross-linking, the Si–O–Si peak shift to higher wavenumbers indicates the increase in hardening/crystallinity of the CL-PDMS, the peak at 742 cm⁻¹ was typically observed in the thermally cured CL-PDMS elastomers. The color maps in Figure 2e,f, superimposed on the optical images, show the area under the Si–O–Si peak, indicating only slight spatial differences in the thickness of the films. As can be seen, the percentage change calculated from the average of the entire map is smaller for the CL-PDMS as compared to the unlinked one. The latter can be attributed to the different sample preparation, i.e., the plain PDMS was dropped into an Al well, resulting in a drop-like thickness pattern after drying, while CL-PDMS forms a more uniform thick film under UV
illuminated on a flat Al substrate. Finally, the standard ASTM D2765-16 procedure was used to estimate the degree of cross-linking. According to the calculations, the degree of cross-linking of UV-grafted samples exposed to UV irradiation for 180 min was ~98%, while the CL-PDMS layer was barely swollen in toluene. The ATR-FTIR, Raman, and percentage cross-linking measurements indicate that with prolonged UV irradiation, there is a probability of dissociation of more than one trimethylsilyl bond to form a gel-like CL-PDMS coating.

As a next step, LISS and CL-PDMS coatings on Al were investigated for their resistance to wetting-related phenomena such as corrosion and biofouling in aqueous environments. As previously described, Al is a non-biocompatible material that is toxic to aquatic life. Therefore, in addition to direct corrosion-related structural failure of metallic components, it is essential to protect Al from contact with a corrosive environment. Figure 3a shows potentiodynamic polarization curves measured in an aqueous electrolyte containing 3.5 wt % NaCl, the standard concentration used to simulate the seawater chloride concentration. Optical microscopy images show the original surface after the grinding and cleaning steps with micron-scale roughness features caused by the SiC abrasive paper (Figure 3b). The bare Al curve shows active corrosion upon anodic polarization; this is due to pitting corrosion with pits uniformly distributed over the entire surface (Figure 3c). The substrate covered with the LISS coating shows a lower current density in the cathodic branch compared to the bare Al surface. However, no localized corrosion was observed on the surface of the LISS samples (Figure 3d). This is explained by a corrosion attack at the interface between the protective lacquer and the LISS coating, where crevice corrosion occurred (Figure S7, Supporting Information). When the potentiodynamic polarization was applied to the CL-PDMS coating, only noise was obtained and no current signal in response to polarization could be measured (Figure 3e, red spectrum, and 3f). This is due to the inability of the corrosive electrolyte to penetrate the cross-linked layer, as well as the covalent bonding of the PDMS to the Al substrate, making electrochemical measurements impossible. Such complete isolation of the material surface from an aggressive environment gains the system superior corrosion resistance.

Nevertheless, it has been shown previously that water can infiltrate PDMS. To investigate the long-term stability and corrosion protection of PDMS-based coatings, bare, LISS, and CL-PDMS were immersed in freshwater and seawater media for several months (Figures 3f and 8, Supporting Information). As shown, bare Al samples corrode severely in both freshwater and seawater media used to grow aquatic organisms (mimicking the freshwater and seawater composition) (see Tables S1 and S2 for chemical composition, Supporting Information). In the case of LISS and CL-PDMS, no corrosion was observed after 85 and 143 days. Note that this set of samples is still immersed in aquatic media, while the full period of corrosion protection will be published elsewhere.

One of the most challenging phenomena associated with the wetting of solid surfaces in aquatic environments is the formation of biofilms or biofouling. Biofilm formation is a complex, multistep process involving a wide variety of microorganisms. Once a solid is immersed in water, it adsorbs glycoprotein organic materials, forming a “conditioning film” within minutes. Bacteria, unicellular algae, and cyanobacteria (blue-green algae) are typically the next species to appear on the material, colonizing the material surface within hours. Species such as freshwater algae are critical to maintaining a healthy aquatic ecosystem as they increase the availability of dissolved oxygen for the organisms below, while the negative effects of Al on algae have been demonstrated. Here, green algae of the species Chlamydomonas reinhardtii, a motile alga that moves freely in the aquatic environment, were used as a freshwater model organism to study the growth and adhesion of algal biofilms on bare, CL-PDMS, and LISS-coated Al (Figure 4). Such green algal biofilms, grown on slippery lubricant-infused surfaces, have been shown to be remarkable indicators of the effectiveness of the liquid-infused layer. Here, treated and control samples were immersed in freshwater growth media with green algae for 8 days under a 16/8 h on/off illumination cycle, and the results are summarized in Figure 4a—d. Over the growth period, there was a significant increase in the algal density of LISS and CL-PDMS samples with no evidence of substrate-related growth reduction or mortality, indicating the nontoxic nature of the coating.

The surface coverage of green algae was obtained from digital and confocal fluorescence microscopy images. As shown in Figure 4a—c, freshwater green algae grow uniformly in Petri dishes. However, the biofilms formed on the treated and control samples show significantly different affinity to the substrates. When the bare samples were pulled through a water–air interface, algal biofilms were firmly attached to Al.
coatings for their fouling release characteristics against early colonizers. *Odontella aurita* is the benthic diatom that belongs to the cosmopolitan taxa category and can be found in the Arctic, sub-Arctic, and even in tropical marine waters.\(^7\) It is an unicellular organism, a cylindrical, chain-forming diatom with a yellow to brown color. The cells are connected to each other by protrusions that extend from the end of each cell. *O. aurita* can either swim freely in the water or be firmly attached to rocks, plants, or animals. It has also been shown that *O. aurita* can act as a substrate for other diatoms in freshwater, brackish, and marine environments.\(^8\)\(^9\)

The treated and control samples were immersed in seawater growth media containing *O. aurita* diatoms for 8 days under a 16/8 h on/off lighting cycle, and the results are summarized in Figure 5. Again, there was a significant increase in diatom density in all samples over the growth period. Surface coverage calculations were performed using digital and confocal fluorescence microscopy images. Bare and CL-PDMS samples were pulled through a water–air interface and showed surface coverage of 99.9 ± 0.1 and 91.2 ± 2.6%, respectively (Figure 5a,b,d and Movies S4 and S5, Supporting Information). The surface coverage of the LISS samples was 4.6 ± 2.7%, a significant difference (\(p < 0.005\)) compared to the bare and CL-PDMS samples (Figure 5c,d and Movie S6, Supporting Information). Such passive shedding, i.e., no external stimuli applied to remove the biofilm rather than pulling it through a water–air interface, indicates poor adhesion of the diatom biofilms to the LISS-coated Al substrates. Furthermore, all treated substrates, i.e., CL-PDMS and LISS, exhibit a well-reflective metallic luster after 8 days of immersion in seawater media, indicating superior resistance to a highly corrosive environment (Figure 5b,c).

surfaces covering 97.4 ± 0.5% of the total sample area (Figure 4a,d and Movie S1, Supporting Information). Furthermore, all bare Al samples showed severe corrosion, resulting in the appearance of dark green-black color (Figure 4a). The biofilms formed on the CL-PDMS samples covered 63.8 ± 18.4% of the total sample area without showing any signs of corrosion (Figure 4b,d and Movie S2, Supporting Information). When the Petri dish containing LISS Al samples was immersed in a larger reservoir of fresh water prior to harvesting, the algal biofilm spontaneously delaminated from the LISS substrates. When pulled through the water–air interface, 99.6 ± 0.3% of the Al surface was both biofilm-free and corrosion-free, showing a highly reflective metallic luster (Figure 4c,d and Movie S3, Supporting Information). Statistical analysis was performed to determine the significance of the resistance of the coated samples to freshwater green algae and showed a p-value of 0.045 and \(<0.005\) for CL-PDMS and LISS aluminum, respectively (Figure 4d).

Figure 4. Digital images of aluminum samples immersed for 8 days in freshwater medium containing *C. reinhardtii* green algae just before (top-left) and immediately after (bottom-left) harvesting by passing through the water–air interface and corresponding bright-field reflectance (top-right) and fluorescence (bottom-right) images obtained immediately after harvesting. (a) Bare, (b) CL-PDMS, and (c) LISS. (d) Calculated surface coverage from digital (red columns) and fluorescence (blue columns) images. Note that fluorescence coverage is plotted on a logarithmic scale.

Although bacteria are usually associated with primary biofilm communities, other microscopic organisms such as diatoms are also known to be early colonizers.\(^8\)\(^9\) Diatoms are unicellular algae, in which the protoplast is enclosed in an elaborately decorated silica shell (the frustule) composed of overlapping halves or “valves”.\(^6\) Diatoms adhere to surfaces through the production of sticky extracellular polymeric substances, which are secreted through an elongated slit in one or both valves, while the division of attached cells rapidly gives rise to colonies that eventually coalesce to form a compact biofilm.\(^16\)\(^66\) While silicone elastomers have been investigated and commercially tested with anti-biofouling paints to “release” fouling organisms under hydrodynamic conditions,\(^3\)\(^9\) it has been demonstrated that diatoms can barely be released from PDMS elastomer coatings even under high-speed operating conditions (>30 knots).\(^3\)\(^8\)\(^66\) Therefore, it is critical to evaluate the developed coatings for their fouling release characteristics against early colonizers. *Odontella aurita* is the benthic diatom that belongs to the cosmopolitan taxa category and can be found in the Arctic, sub-Arctic, and even in tropical marine waters.\(^7\) It is an unicellular organism, a cylindrical, chain-forming diatom with a yellow to brown color. The cells are connected to each other by protrusions that extend from the end of each cell. *O. aurita* can either swim freely in the water or be firmly attached to rocks, plants, or animals. It has also been shown that *O. aurita* can act as a substrate for other diatoms in freshwater, brackish, and marine environments.\(^8\)\(^9\)

The treated and control samples were immersed in seawater growth media containing *O. aurita* diatoms for 8 days under a 16/8 h on/off lighting cycle, and the results are summarized in Figure 5. Again, there was a significant increase in diatom density in all samples over the growth period. Surface coverage calculations were performed using digital and confocal fluorescence microscopy images. Bare and CL-PDMS samples were pulled through a water–air interface and showed surface coverage of 99.9 ± 0.1 and 91.2 ± 2.6%, respectively (Figure 5a,b,d and Movies S4 and S5, Supporting Information). The surface coverage of the LISS samples was 4.6 ± 2.7%, a significant difference (\(p < 0.005\)) compared to the bare and CL-PDMS samples (Figure 5c,d and Movie S6, Supporting Information). Such passive shedding, i.e., no external stimuli applied to remove the biofilm rather than pulling it through a water–air interface, indicates poor adhesion of the diatom biofilms to the LISS-coated Al substrates. Furthermore, all treated substrates, i.e., CL-PDMS and LISS, exhibit a well-reflective metallic luster after 8 days of immersion in seawater media, indicating superior resistance to a highly corrosive environment (Figure 5b,c).
4. CONCLUSIONS

In this study, we further explored a one-pot approach of UV-grafting of PDMS to convert a surface of Al into LISS. Here, PDMS was covalently grafted to Al by UV irradiation at a specific wavelength and served as a surface energy-reducing agent, while the remaining unbound oil was simultaneously utilized as an infusing lubricant. Our approach does not require harsh pre/post-grafting harsh treatments or micro- or hierarchical micro/nano-surface structuring to be suitable for industrial applications, making it advantageous over super-hydrophobic and SLIPS surfaces as long as the substrate is UV-stable, i.e., metals, metal oxides, ceramics, and glasses. Since Al is used in highly corrosive environments and at the same time is susceptible to biofouling, the UV-grafted Al samples were investigated for their corrosion resistance in aqueous environments with and without aquatic organisms such as freshwater algae and seawater diatoms. We investigated two types of coatings: (i) semi-rigid, CL-PDMS and (ii) liquid-like LISS, which were obtained by different exposure times to UV irradiation. While bare Al corroded severely in seawater media within a short period of exposure, both coatings exhibited superior corrosion resistance, showing a corrosion-free surface after 143 days of immersion. The latter was also confirmed by potentiodynamic polarization measurements, especially for the CL-PDMS coating. This superior corrosion resistance was attributed to the inability of the corrosive electrolyte to penetrate the CL-PDMS layer, which was also firmly attached to the Al substrate. To test the biofouling resistance of the UV-grafted coatings, the bare and coated Al surfaces were exposed for 8 days to a medium containing aquatic species such as freshwater C. reinhardtii algae and seawater O. aurita diatoms. While both coatings exhibited superior corrosion resistance, LISS prevented almost complete biofilm attachment of both aquatic species in short-term laboratory studies. In contrast to CL-PDMS, the presence of residual, unbound silicone oil in LISS enhances the anti-biofouling performance of PDMS by forming an additional stable liquid—liquid interface that separates the solid surface from the fouling liquid media. Despite the superior corrosion resistance, the CL-PDMS coating should be further investigated for its damage tolerance, while the self-healing properties imparted to CL-PDMS by the infusions of silicone oil could further improve the overall corrosion resistance. Given the above advantages and considering that the proposed approach is easy to implement, fast, nontoxic, environmentally friendly, scalable, and inexpensive, we envision that the UV-grafting approach of PDMS will advance the development of a nontoxic omniphobic and SLIPS surfaces as long as the substrate is UV-stable, i.e., metals, metal oxides, ceramics, and glasses. Since Al is used in highly corrosive environments and at the same time is susceptible to biofouling, the UV-grafted Al samples were investigated for their corrosion resistance in aqueous environments with and without aquatic organisms such as freshwater algae and seawater diatoms. We investigated two types of coatings: (i) semi-rigid, CL-PDMS and (ii) liquid-like LISS, which were obtained by different exposure times to UV irradiation. While bare Al corroded severely in seawater media within a short period of exposure, both coatings exhibited superior corrosion resistance, showing a corrosion-free surface after 143 days of immersion. The latter was also confirmed by potentiodynamic polarization measurements, especially for the CL-PDMS coating. This superior corrosion resistance was attributed to the inability of the corrosive electrolyte to penetrate the CL-PDMS layer, which was also firmly attached to the Al substrate. To test the biofouling resistance of the UV-grafted coatings, the bare and coated Al surfaces were exposed for 8 days to a medium containing aquatic species such as freshwater C. reinhardtii algae and seawater O. aurita diatoms. While both coatings exhibited superior corrosion resistance, LISS prevented almost complete biofilm attachment of both aquatic species in short-term laboratory studies. In contrast to CL-PDMS, the presence of residual, unbound silicone oil in LISS enhances the anti-biofouling performance of PDMS by forming an additional stable liquid—liquid interface that separates the solid surface from the fouling liquid media. Despite the superior corrosion resistance, the CL-PDMS coating should be further investigated for its damage tolerance, while the self-healing properties imparted to CL-PDMS by the infusions of silicone oil could further improve the overall corrosion resistance. Given the above advantages and considering that the proposed approach is easy to implement, fast, nontoxic, environmentally friendly, scalable, and inexpensive, we envision that the UV-grafting approach of PDMS will advance the development of a nontoxic omniphobic and corrosion-resistant coating technology for challenging but highly desirable aquatic applications.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.3c04508.

Typical UV–vis spectrum of a medium-pressure mercury UV lamp; high-resolution XPS C 1s spectrum measured on polished Al substrates; typical XPS survey spectrum of UV-grafted PDMS on Al and bare Al substrates; high-resolution O 1s XPS spectra of UV-grafted PDMS on Al substrates measured at 75° angle; angle-resolved high-resolution Al 2p XPS spectra of UV-grafted PDMS on Al substrates; SEM images of the cross-linked silicone oil on Al foil; corrosion of LISS-coated Al on edges; time-lapse digital and bright-field optical microscopy images of Al samples in freshwater and seawater media after 85 and 143 days of exposure; chemical composition of freshwater medium; and chemical composition of seawater medium (PDF).

Movie S1. Shading of the green algal biofilm from bare Al substrate surfaces during the transition through a water–air interface (MP4).

Movie S2. Green algal biofilm shadowing on CL-PDMS Al substrate surfaces during the transition through a water–air interface (MP4).

Movie S3. Green algae biofilm shadowing on LISS Al substrate surfaces during the transition through a water–air interface (MP4).

Movie S4. Diatom biofilm shading of bare Al substrate surfaces during the transition through a water–air interface (MP4).

Movie S5. Diatom biofilm shading on CL-PDMS Al substrate surfaces during the transition through a water–air interface (MP4).

Movie S6. Diatom biofilm shading of LISS Al substrate surfaces during the transition through a water–air interface (MP4).

AUTHOR INFORMATION

Corresponding Authors

Wolfgang H. Goldmann — Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91052, Germany; Email: wolfgang.goldmann@fau.de

Alexander B. Tesler — Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany; Email: alexander.tesler@fau.de

Authors

Lucia H. Prado — Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany; orcid.org/0000-0003-3425-7667;

David Böhringer — Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91052, Germany

Anca Mazare — Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany

Lamborghini Sotelo — Institute for Nanotechnology and Correlative Microscopy eV INAM, Fraunhofer Institute, Forchheim 91301, Germany; Department of Physics, Institute for Optics, Information and Photonics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany

George Sarau — Institute for Nanotechnology and Correlative Microscopy eV INAM, Fraunhofer Institute, Forchheim 91301, Germany; Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Forchheim 91301, Germany; Max Planck Institute for the Science of Light, Erlangen 91058, Germany

https://doi.org/10.1021/acsami.3c04508

ACS Appl. Mater. Interfaces XXXX, XXX, XXX--XXX
Silke Christiansen — Institute for Nanotechnology and Correlative Microscopy eV INAM, Fraunhofer Institute, Forchheim 91301, Germany; Fraunhofer Institute for Ceramic Technologies and Systems IKTS, Forchheim 91301, Germany; Institute for Experimental Physics, Freie Universität Berlin, Berlin 14195, Germany; orcid.org/0000-0002-9098-5087

Ben Fabry — Department of Physics, Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91052, Germany

Patrik Schmuki — Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany; Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc 772 07, Czech Republic; orcid.org/0000-0002-9208-5771

Sannakaiva Virtanen — Department of Materials Science and Engineering, Institute for Surface Science and Corrosion, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acsami.3c04508

Author Contributions
L.H.P. carried out laboratory research on the preparation and coating of the samples and corrosion experiments, D.B. carried out algal and diatom biofilm characterization, A.M. carried out XPS measurements, L.S. carried out Raman measurements, G.S. carried out and analyzed Raman measurements, S.C. supervised Raman measurements, B.F. conceptualized and supervised biofouling experiments, P.S. conceptualized experiments, S.V. conceptualized and supervised corrosion experiments, W.H.G. conceptualized and supervised biofouling experiments, A.B.T. conceptualized experiments and carried out laboratory research on the preparation and coating of the samples, wetting, FTIR measurements, and biofouling experiments. The manuscript was written and completed with the contributions of all authors. All authors approved the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank the DFG and the DFG Cluster of Excellence EAM for financial support. A.B.T. and W.H.G. thank the DFG (grant number 442826449; SCHM 1597/38-1 and FA 336/13-1) for financial support. The authors thank the Nürnberg Zoo for providing the recipe and materials for the preparation of the artificial seawater medium. L.S. and S.C. were supported by the European Union’s H2020 research and innovation program under the Marie Skłodowska-Curie grant agreement AlMed no. 861138, 2020-2023. G.S. and S.C. acknowledge the financial support from the European Union within the research projects 4D + nanoSCOPE, LRI C10, and by the “Freistaat Bayern” and European Union within the project Analytiktechnik für Gesundheits- und Umweltforschung AGEUM, StMWi-43-6623-22/1/3. The authors thank Ms. Helga Hildebrand for the XPS measurements.

REFERENCES

