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The spontaneous motion of microbeads bound to the cytoskeleton of living cells is not an ordinary random
walk. Unlike Brownian motion, the mean-square displacement undergoes a transition from subdiffusive to
superdiffusive behavior with time. This transition is associated with characteristic changes of the turning angle
distribution. Recent experimental data demonstrated that force fluctuations measured in an elastic hydrogel
matrix beneath the cell correlate with the bead motion �C. Raupach et al., Phys. Rev. E 76, 011918 �2007��.
These data indicate that the bead trajectory is driven by motor forces originating from the actomyosin network
and that cytoskeletal remodeling processes with short- and long-time dynamics are mainly responsible for the
non-Brownian behavior. We show that the essential statistical properties of the spontaneous bead motion can be
reproduced by a particle diffusing in a potential well with a slowly drifting minimum position. Based on this
simple model, which can be solved analytically, we develop a biologically plausible numerical model of a
tensed and continuously remodeling actomyosin network that accounts quantitatively for the measured data.
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I. INTRODUCTION

Microbead rheology has been used successfully in the
past decade as an experimental tool for probing the vis-
coelastic properties of complex liquids and solids. In passive
microrheology, micron-sized beads are dispersed in the ma-
terial of interest and the spontaneous fluctuations of these
markers are tracked �1�. A statistical analysis of the observed
random trajectories can then reveal collective properties of
the material, in particular the frequency-dependent complex
shear modulus.

The bead motion results from an interplay between ran-
dom molecular forces that drive the bead, and impeding
forces from the system’s viscoelastic response to the bead
motion.1 When a bead fluctuates spontaneously, a small
amount of thermal energy is transferred from the medium to
the bead’s few macroscopic degrees of freedom. After a short
time, the coherent kinetic energy of the bead is again dissi-
pated by the medium. The two processes, representing just
different aspects of the same ongoing energy exchange, are
therefore linked by fluctuation-dissipation theorems �2�.

In the case of inert, nonliving matter, random forces act-
ing on the bead are of thermal origin. Assuming thermal
equilibrium, they can usually be considered as white noise
with a power spectral density set by the temperature. The
statistics of the bead trajectories is then only determined by
the response function of the surrounding material, and in
practice one can compute a frequency-dependent complex
shear modulus from the measured time-dependent mean-
square displacement �MSD� �3�.

When microrheology is applied to cells, the situation is
more complicated. Living cells are highly dynamic, adaptive
systems in a state far from equilibrium. Adenosine triphos-
phate �ATP�-driven motor proteins are able to create nonther-
mal, localized, temporally correlated, and spatially directed

forces. In addition, several motors can cooperate in an orga-
nized way to create collectively strong, persisting traction.
This happens, for example, in stress fibers, resembling a kind
of “micromuscle” within a cell. It is not obvious how to
separate “random” force fluctuations, occurring on various
time scales, from a coordinated activity in such systems.

The pronounced inhomogenity of the cytosol and the cy-
toskeleton raises further conceptual problems. Nevertheless,
in active microrheological experiments, cells can be treated
as an effective �averaged� medium with well-defined vis-
coelastic material properties. Several groups, using different
experimental methods, have found a universal, weak power-
law behavior for the complex elastic modulus �4–8�. In this
respect, living cells resemble inert materials with so-called
soft glassy rheology. A general mechanism able to explain
this power-law rheology has been presented by Sollich et al.
�9�.

In the spirit of the effective medium approach, the known
response function of the cell can be combined with the MSD
data from spontaneous bead �or endogeneous marker� fluc-
tuations, in order to deduce the properties of the driving
forces. This idea was proposed by Lau et al. �10�, who dem-
onstrated that the force fluctuations are much stronger than
thermal noise. They further concluded from their data that
the power spectrum should follow a �−2 law. However, the
interpretation of the power spectrum in terms of point motors
dispersed throughout the intracellular medium has recently
been challenged �11�.

In this report, we refer to recent experiments �12� in
which we observed the spontaneous motion of beads coated
with fibronectin. Cells recognize the coating as a “substrate”
and form focal adhesions �FAs� at the bead surfaces, thus
tightly connecting them to the cytoskeleton. The beads then
started to move in a random, yet clearly non-Brownian way,
which was analyzed statistically in detail. Superimposed
onto a rapid random diffusion, the bead trajectories often
showed periods of slow drift along some persistent direc-
tions, separated by major turns �see Fig. 1�.

At the same time, markers embedded in an elastic poly-
acrylamide substrate beneath the cell fluctuated in close cor-

1In active microrheology, the viscoelastic response function can
be measured independently by applying controlled external forces
on the bead.
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relation with the intracellular beads. This suggests strongly
that the main driving forces of the observed motions origi-
nate from the cytoskeletal network, which is mechanically
coupled, via transmembrane receptors, to both the beads and
the extracellular substrate. Hence, a motor-driven network
model, rather than an effective medium approach with point
motors, seems more appropriate for describing the system.

Using only in vitro actin networks with passive crosslink-
ers, Gardel et al. �13,14� could qualitatively reproduce the
mechanical power-law response of cells. When prestressed,
these passive networks showed a nonlinear stress stiffening
similar to real cells. The existence of such prestress in acto-
myosin stress fibers has, for example, been clearly demon-
strated by Kumar et al. �15�. The mechanical properties of
single stress fibers have been investigated by Deguchi et al.
�16�.

Taken together, the cytoskelatal network is a highly com-
plex system of different polymer filaments and filaments
bundled into fibers, as well as various types of cross-linkers
and motor proteins. In order to develop useful approxima-
tions of this complex situation it is thus crucial to identify
�and restrict oneself to� the most relevant key components.
As we will demonstrate below, prominent experimental ob-
servations can be reproduced by a network of actomyosin
stress fibers as a minimum system.

II. EXPERIMENTS

For our experiments, MeWo skin carcinoma cells were
plated onto 35-mm culture dishes �Nunclon surface� and
grown to confluence overnight in an incubator �5% CO2,
37 °C�. Carboxylated fluorescent polystyrene beads �Mo-
lecular Probes, Eugene, OR� with a radius of 2 �m were
coated with fibronectin �Roche Applied Science� and bound
to the cells via integrin receptors 30 min prior to measure-
ments. Fluorescent images were recorded with a charge-
coupled-device camera �Hamamatsu Orca-ER� mounted on
an inverted microscope with a 10� �0.3 NA� objective. Bead
positions of typically 50–200 beads per field of view were
tracked continuously for 5 min by computing the intensity-
weighted average �center of mass� of each bead �accuracy
10 nm �rms� for 10� magnification of the objective� and

corrected for the effects of microscope stage drift. Details of
the measurement procedure can be found in �12�.

III. QUANTIFYING TRAJECTORIES

The raw data provided by bead tracking experiments are

two-dimensional particle trajectories R� �t�, recorded with a
fixed sample rate 1 /�t up to a maximum observation time
Tobs. The trajectories vary greatly—even in their qualitative
aspects—from one measurement to the next.2 It is therefore
essential to define suitable statistical averages in order to
extract meaningful and generalizable information from an
ensemble of trajectories. In this section we introduce the
main statistical quantities that will be used in this work.

Figure 2 shows three marked points along a particle tra-
jectory, taken at the times �t−��, t and �t+��. Here and in the
following, t is called the “absolute time” and � the “lag
time.” The vectors

�R� − = R� �t� − R� �t − �� ,

�R� + = R� �t + �� − R� �t� �1�

describe the displacements of the particle between the suc-
cessive marked points. The MSD is defined as

2Even within a confluent monolayer of cells the statistical proper-
ties of beads are strongly inhomogeneous with respect to space and
time. One of the important factors here may be the different degree
of internalization of the beads into the cell and how strongly they
bind to the cytoskeleton.

FIG. 1. �Color online� An example of a measured bead trajec-
tory, demonstrating phases of persistent motion �marked by dashed
arrows�, separated by occasional major turns. The inset shows an
enlarged detail �box width of 40 nm�.
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FIG. 2. �Color online� Schematic trajectory, demonstrating the
definition of the shift vectors and the turning angle.
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�R2��� = � 1

2
���R� −�2 + ��R� +�2��

t
, �2�

where �¯	t stands for an average over the absolute time t.
A useful dimensionless parameter is the local slope of the

“MSD–versus–lag time” curve in a double–logaritmic plot:

b��� =
d ln��R2���/�2�

d ln��/�t�
, �3�

where �=
�R2��=�t� is the average bead displacement dur-
ing one sampling interval �t. Here b can be interpreted as an
instantaneous or “local” power-law exponent: For standard
random walks, b=1; for subdiffusive b�1 and superdiffu-
sive processes, b	1 �17�.

Another important quantity is the so-called turning angle

� �−� , . . . , +��, defined as the angle enclosed between

two successive shift vectors �R� − and �R� + �Fig. 2�:


��,t� = ���R� −,�R� +� . �4�

The turning angle distribution �TAD� can be expressed as

P�
,�� = ��„
 − 
��,t�…	t. �5�

IV. ESSENTIAL SYSTEM COMPONENTS

A main finding of our experimental work was a transition
in the MSD from subdiffusive to superdiffusive behavior at
lag times around �1=1 s. As drawn schematically in Fig. 3,
this suggests a crossover from a flat to a steep power law.
The inset of the figure also shows the major physical factors
which play a role in determining the observed bead motion.

The medium is defined here as the combined system of
cytoskeleton and cytosol. In an average sense, it can be de-
scribed by a rheological response function, relating a given
applied force profile to the resulting temporal displacement.
The shear modulus G�s� of living cells as a function of
Laplace frequency s= i� has been measured by active mi-
crorheology with cytoskeleton-bound beads �5� and was

found to follow a weak power law G�s��s
 superimposed
onto a linear background viscosity term s�. The small expo-
nent 
�0.2 means that the response is predominantly elas-
tic.

The noise term that drives the bead motion includes all
rapidly and randomly fluctuating forces acting on the bead.
Besides thermal fluctuations, which can be described by
temperature-dependent white noise, we have to consider
noise created by motor protein activity. The power spectrum
of the noise generated by ATP-powered motor proteins will
in general be frequency dependent. However, in the limit of
very small frequencies �below some rollover frequency in the
millisecond range� the spectrum becomes flat. Since we are
interested here in the temporal regime around 1 s, the motor
noise, too, can be modeled as being effectively white �see
Fig. 9�.

Taken together, we argue that the flat, subdiffusive power
law in Fig. 3 can be attributed to a diffusion of the bead in
the complex medium described by G�s� and s�, driven by
white noise of thermal as well as active origin.

The driving force responsible for the steep power law,
which signifies almost ballistic bead motion �constant drift
velocity, MSD exponent �2�, must exhibit a certain degree
of persistence. If the medium were purely viscous, a constant
traction force ��t0� could account for the ballistic motion. An
elastic medium requires a traction force that grows linearly
with time ��t1� for a substantial period—in other words, a
force ramp. In reality, the shear modulus of the cellular me-
dium has a small fractional power-law exponent, so that the
lower bound for the temporal exponent of the traction force
is somewhat smaller than 1.

In the following, we will approximate the system as a
particle in two dimensions, bound elastically in a well and
simultaneously submerged in a viscous background liquid.
The particle is driven by white noise forces, as well as per-
sistent force ramps. This situation can be captured in the
simple picture of “diffusion in a drifting potential well.”

V. DRIFTING WELL MODEL

A. Diffusion in a potential well

We consider the two-dimensional spontaneous motion of
a test particle, suspended in a fluid and simultaneously bound
in a harmonic potential well. Neglecting inertia effects �over-
damped Langevin dynamics�, we decompose the forces act-
ing on the particle as follows:

F� �tot� = F� �rnd� + F� �fri� + F� �ela�. �6�

The noise term F� �rnd� represents the driving forces due to the
molecular agitation of the background fluid. In the following
we will use white noise with a power density of �w and
statistically independent spatial components. The damping
term is modeled by a linear friction force, proportional to the
momentary velocity v��t� of the particle:

F� �fri��t� = − �v��t� . �7�

The binding of the particle is described by an isotropic elas-

tic potential well of stiffness kw, centered at the origin R� ctr
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FIG. 3. �Color online� Schematic illustration of the experimen-
tally observed transition from subdiffusive to superdiffusive behav-
ior. It is interpreted as a cross-over between two power-law re-
gimes. The inset shows the physical components that are relevant
for this feature.
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=0� . This corresponds to a potential energy function U

= �kw /2�R2 and produces a binding force F�ela��R� �=−kwR� , so
that

F� �tot� = F� �rnd� + F� �fri� + F� �ela�. �8�

The global MSD of this system can be computed analyti-
cally �for the derivation see the Appendix�:

�R2��� =
2�w

kw�
�1 − e−�kw/���� . �9�

It is useful here to define a characteristic relaxation time

�0 = �/kw. �10�

For small lag times ���0, the exponential function can be
expanded to first order in �, yielding

�R2�� → 0� = 2��w/�2�� . �11�

In this regime, the binding force plays no role and the par-
ticle diffuses freely with the diffusion constant3

D = �w/�2�2� . �12�

For long lag times ���0, the spatial probability distribution
of the particle remains bounded, and the MSD converges
towards a characteristic plateau value at �→�:

Rb
2 = �R2�� → �� = 2�w/�kw�� . �13�

In the following, the quantity Rb is called binding range.
Note that Rb

2 is inversely proportional to the stiffness kw of
the elastic well. The diffusion constant can also be expressed
as

D = Rb
2/�0. �14�

Figure 4�a� compares the analytic expression �solid line�
for the MSD �in units of Rb

2� versus lag time �in units of �0�
with a numerical simulation �symbols�. The parameters have
been chosen arbitrarily, so that �0=100s and Rb

2=100 �m2.
The turning angle distributions, plotted in Fig. 4�b�, show
that complete inversions of the propagation direction become
increasingly likely for lag times larger than the binding time
�0.

We can thus conclude that a superdiffusive MSD �b	1�
corresponds to directional correlation of the bead motion and
a subdiffusive MSD �b�1� is linked with directional anti-
correlation. This close connection between diffusivity and
directionality is a general property of random walks and can
also be demonstrated analytically in some simple models
�18,19�.

B. Effect of well center drift

In the previous section the particle performed a random
walk in a static potential “landscape,” in our case given by a
simple parabolic well. We now turn to a situation where this

landscape is itself deforming slowly, i.e., on a long time scale
compared to the characteristic time �0. Such a gradual defor-
mation can be modeled by continuous changes of the poten-

tial well parameters kw and R� ctr. In the following we focus on

the possibility of a drifting well center R� ctr�t�=e�vwt, i.e., a
ballistic motion of the center along direction e� with constant
velocity vw. A biophysical interpretation of such behavior is
presented below. Note that an additional force acting on the
bead, increasing linearly with time, is required to shift its
equilibrium position with constant velocity.

The slow drift of the well center can have a significant
effect on the particle within the well only for long enough
lag times �	�1. The characteristic time �1 is estimated by
equating the distance v�1 which the center traveled ballisti-
cally with the binding range Rb. This yields

�1 = Rb/vw = 
2�w/�kw��/vw. �15�

It is convenient to prescribe �1 instead of vw. We assume here
the relation �0��1. Let us finally note that in order to de-
scribe the essential experimental features, the drifting well
model requires four generic parameters �, �w, kw, and vw.

We performed a computer simulation of particle diffusion
in a harmonic well with random directed center motion for
the parameters �=1 pN s/�m, Rb

2=100 �m2, �0=101 s, and
�1=104 s.

Figure 5�a� shows that for lag times �	�1 the MSD is
rising again from the plateau, reaching a superdiffusive local

3In n-dimensional space, the diffusion constant D is convention-
ally defined by the relation ��R2	=n2D�.

FIG. 4. �Color online� Diffusion in a potential well: �a� mean-
square displacement �line, analytic solution; symbols, numerical
simulation�. The dashed line has a power-law exponent of 1. �b�
Turning angle distributions for various lag times in units of �0,
showing increasingly antidirectional behavior.
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power-law exponent of two. The corresponding transition
from “anticorrelated” to “correlated” turning angles at times
around �1 can be clearly seen in Fig. 5�b�.

In the present generic model, the characteristic times �0
and �1 define up to three distinct regimes. With respect to the
experimental findings to be explained, however, our focus
lies in the subdiffusive to superdiffusive transition at �1, with
its associated changes of directionality. We consider the “pla-
teau regime” and the subsequent “traction regime” as essen-
tial and robust properties of the model. Other features, like
the behavior at extreme lag times ���0 and ���1 lag times
�being not accessible with our current experimental setup�,
depend more sensitively on the detailed assumptions made
and are thus considered secondary for this paper.4

VI. BIOPHYSICAL MODEL

Next we present a biophysical realization of the generic
model of a drifting well. Our basic assumption is that the
bead �representing the particle� becomes a node in a network
of dynamically remodeling stress fibers. These ATP-powered
acto-myosin fibers have the multiple roles of �I� providing
the rapid force fluctuations, �II� of creating an elastic poten-
tial well, �III� of generating force ramps during their devel-
opment, and �IV� of producing a constant level of prestress
afterwards. The details of the model are described in the
following sections.

A. Cell and bead

Because it is the bead that we directly observe in the
experiments, it forms the central object of our model. Due to
its fibronectin coating, the bead becomes an integrated part
of the cytoskeleton.

We assume a cell of flat shape, adhering strongly to a
relatively rigid substrate underneath. Our model is effec-
tively two dimensional, with a disk-shaped bead floating in a
continuous, viscous, intracellular background fluid. We do
not consider further geometric details such as partial or com-
plete internalization of the bead into the cell. Since the cyto-
sol is crowded with soft matter, the background viscosity is
chosen to be rather high �22�. In Ref. �5�, the rheological
response of the average cellular medium has been deter-
mined to be a weak power law �here attributed to the fiber
network�, with a superimposed linear background viscosity
of 1.4 Pa s �in this paper attributed to the cytosolic back-
ground fluid�. Neglecting friction contributions due to the
dragging of the fiber network through the cytosol, the fric-
tion constant � can be estimated by the three-dimensional
�3D� Stokes formula

� = 6��rbead. �16�

While the cytosol causes only damping of the bead motion
and energy dissipation, the most important part of the model
cell is the cytoskeleton, a connected meshwork of semiflex-
ible polymer filaments and cross linkers. A part of the fila-
ments is connected to trans-membrane receptors �FAs� and
thereby anchored to the substrate. Another part of filaments
is mechanically coupled to FAs forming on the surface of the
suitably coated bead.

B. Fiber network topology

In the cytoskeletal network we distinguish passive fila-
ments �without working motor proteins� and active fibers
�creating internal forces�, called stress fibers. For simplicity,
we ignore the passive filaments altogether and focus on those
stress fibers directly attached to the bead. For a bead of given
size, the maximum number of direct stress fibers is limited
by steric hindrance. We postulate here a constant average
number of Nf fibers. Attached fibers project radially outward
from the bead center and have �at the time of first formation�
an average length Lf. This leads to a “spider web”-shaped
geometry of the network in the immediate vicinity of the
bead �compare to Fig. 6�. A realistic modeling of the com-

4It should be noted that other groups, investigating different sys-
tems and using faster experimental techniques such as laser track-
ing, have reported data which could be used as evidence for the
subdiffusive regime ���0. For instance, Yamada et al. �4� observed
a gradual transition from diffusive MSD to a plateau even for ther-
mally driven polysterene beads in gelatin. Tolic-Norrelykke et al.
�20� investigated the fluctuations of lipid granules in living yeast
cells and found subdiffusive behavior with a power-law exponent of
around 0.75 in the lag time regime from 10−4 to 10 s. Their data
provide, however, only weak evidence for the onset of a plateau.
Nevertheless, also the theory of semiflexible polymer networks pre-
dicts for long lag times a plateau in the MSD due to elastic trapping
�21�. In the regime of extremely long times, �	 	�1, where the
whole structure of the cytoskeleton can be remodeled drastically,
processes like cell crawling already start to play a role. Such effects
are beyond the scope of our simple model.

FIG. 5. �Color online� Effect of center drift. �a� Mean-square
displacement. �b� Turning angle distributions for various lag times
in units of �0: transition from antidirectional to directional behavior.
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plete fiber network is beyond the scope of this paper. We
simply assume here that the remote end of each direct stress-
fiber is tightly anchored to the substrate via a trans-
membrane FA �rather than being cross-linked to the distant
parts of the network�.

C. Collective fiber properties

We first ignore the internal biomechanical structure of real
stress fibers and use a minimalistic “black box model” that
provides just the essential features: elasticity and force fluc-
tuations, as well as a growing and finally saturating prestress.
The temporal development of the fiber is schematically
drawn in Fig. 7. The time of birth, t=0, occurs when both
ends of the fiber are firmly attached to focal adhesions and
the fiber has shrunk enough to remove any initial slack. From
then on, the fiber will affect the bead motion.

In particular, we assume that the fiber generates along its
momentary direction white noise force fluctuations of power
spectral density � f. In addition, it acts as a Hookian spring of
stiffness kf. This model describes the stress fiber as a homo-
geneous elastic cylinder of length Lf and radius rf, we can
relate the spring constant kf to a collective elastic modulus Ef
via

kf = F/�L = ��rf
2�Ef/Lf . �17�

At given momentary length L�t� and rest length Lrest�t�, the
resulting elastic force is

F�t� = kf�L�t� − Lrest�t�� . �18�

At the time of birth, we set L�0�=Lrest�0�=Lf. From then on,
the rest length is shrinking5 in proportion to a developmental
variable ��t�� �0,1�, according to

Lrest�t� = L0 − �Ff/kf���t� . �19�

Here, Ff is the maximum �asymptotic� force the fiber would
produce under isometric conditions. We first consider a
simple transient dynamics, according to

��t� = 1 − e−t/Tf . �20�

This produces a growing and eventually saturating prestress,
as shown in the figure. Here, Tf is the fiber buildup time. For
small times compared to Tf, we have ��t�Tf�= t /Tf. If L�t�
were fixed, the fiber prestress force would in this transient

regime increase linearly at a rate Ḟf =Ff /Tf.

5The shrinking of the fiber’s rest length should be considered as a
macroscopic net effect of complex biophysical and biochemical
processes on the microscopic level. For a simple picture, imagine a
minimalistic stress fiber model, consisting of just two straight and
parallel actin filaments, one end of each filament being connected to
a focal adhesion. If the sum of the filament lengths exceeds the
distance between the adhesions, there is a region of mutual filament
overlap where myosin motors can cross-link and create traction
forces. In the case where both adhesion positions are rigidly fixed to
the substrate �isometric conditions�, the filaments would thereby
become slightly stretched and the system would quickly reach a
new equilibrium configuration. On somewhat longer time scales,
the actin filaments can grow longer by continuous polymerization at
their open ends. As a result, the zone of overlap increases and
additional myosin molecules find opportunities to cross-link. In re-
ality, the actual number and activity of the myosins, as well as the
rates of actin polymerization or depolymerization, can be regulated
by complex biochemical control networks, which also involve the
focal adhesions. In our model, one of the focal adhesions is con-
nected to the viscoelastically bound bead and is therefore mobile to
a certain extent. While the mobile adhesion is pulled towards the
fixed one by the fiber’s self-created tension, the parallel filaments
can perform a sliding motion similar to muscle filaments. Under
such dynamic conditions, the average force produced by the collec-
tive myosin activity is expected to be reduced, as compared to the
static situation. In the present model, we subsum all those effects
into a “developmental parameter” ��t�, while quantities such as the
number of myosins Nm in the fiber, or the maximum force Ff which
they can produce, are considered to be constant.

substrate

cytosol
FA

mature
stress
fiber

developing
stress fiber

bead

fiber with
slack

FIG. 6. �Color online� Schematic “spider” network, showing
fibers in various stages of their development.

time
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t=0

prestress

fluctuations
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t=T
f

FIG. 7. �Color online� Development of the model fiber.
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D. Acto-myosin model

This section relates the collective fiber properties Ff and
� f to the microscopic parameters of the acto-myosin system.
In the simplest microscopic model, a stress fiber consists of
actin filaments, which are dynamically cross-linked by myo-
sin motor proteins �as well as other types of linked molecules
not considered here�. It is assumed that each myosin mol-
ecule repeatedly attaches to a pair of actin filaments for a
period �m, during which it produces a constant force fm in the
fiber. The cycle time Tm between two successive attachments
is fluctuating according to Poisson statistics, with an average

T̄m. The duty ratio of the mysoin motor is therefore �m

=�m / T̄m. Let there be Nm myosin molecules in the fiber, act-
ing statistically independently and additively.6

Then, the average force per myosin is given by f̄m

=�mfm and the total force of the fiber by Ff =Nmf̄m
=Nm�mfm. The transient growth rate of the fiber force is

Ḟf = Nm�mfm/Tf . �21�

The power spectrum of the force fluctuations can be derived
in this simple model as follows: We describe the individual
force pulse of a myosin during attachment as am�t�
= fmbox�m

�t�, where box�m
�t�=1 for t� �−�m /2 , +�m /2� and

box�m
�t�=0 otherwise. The successive reattachment events

are expressed as a sequence of �-peaks, pm�t�=�k=1
n ��t

− tmk�, with n→�. The intervals Tmk= tmk− tmk−1 are Poisson

distributed with mean �Tmk	k= T̄m. The pulse train of forces
due to a single myosin is the convolution fm�t�= pm�t�
� am�t�. Its Fourier transform fm��� is related to the power
spectrum: Sm���= 1

nT̄m
�fm����2= � 1

nT̄m
�pm����2��am����2. The

term in brackets is the spectral power of the infinite sequence
of � peaks and equals the rate of the Poisson process, i.e.,

1 / T̄m. The Fourier transform of the single force pulse is
am���= fm�msinc���m /2�, with sinc�x�=sin�x� /x. The PSDs
of the Nm myosins are additive, so that Sf =NmSm. In the
long-time �small-frequency� limit �� �1/�m�, the sinc func-
tion is �1, the spectrum is flat, and the effective white noise
power spectral density �PSD� of the fiber is given by the
prefactors, � f =Sf��=0�, and thus

� f = Nmfm
2 �m�m. �22�

VII. RELATING THE BIOPHYSICAL AND DRIFTING
WELL MODELS

In this section, we will map the collective biophysical
properties onto the four generic quantities characterizing the
drifting well model. As the friction constant � is common to
both models, the only task is to compute the collective well

properties �w, kw, and vw from those of the Nf individual
fibers. For this end, we assume that in the statistical average,
the fiber directions will be isotropic with respect to the well
center.

Due to the isotropy, the elastic well formed by the radial
fibers behaves as a harmonic potential well for small devia-
tions from the minimum position. �Note that the prestress
existing in the fibers does not affect its elastic properties in
our linear model.� The collective isotropic stiffness kW of the
well can be estimated by considering a small bead deviation
�x from the minimum towards the x direction. The total �x
component of the� binding force is the sum of elastic forces
exerted by the individual fibers. In the limit of long fibers,
the component contributed by a fiber in orientation � is F�

=kf�x cos2 �. The average isotropic stiffness of the well is
therefore given by

kw = Nfkf�cos2 �	 = �1/2�Nfkf . �23�

Another function of the fibers is the generation of force
fluctuations. Since each fiber fluctuates independently with
power density � f along its direction �, the variances of the
random force components are additive. The total random
forces on the bead in the x and y directions remain uncorre-
lated. On average, accounting again for the cos � factors, one
obtains

�w = �1/2�Nf� f . �24�

Finally we have to estimate the well drift velocity vw from

the well stiffness kw and the force growth rate Ḟf of the Nf
fibers. An individual fiber would shift the well center with

velocity v1= Ḟf /kw along the fiber direction. These individual
velocities add up linearly. Assuming independent velocity
vectors with random directions and performing a statistical
average, one obtains for the absolute value of the resulting
sum velocity vw= �
� /4
Nf�v1, and therefore

vw =
�

4
Nf

Ḟf

kw
. �25�

VIII. EXTRACELLULAR MATRIX FLUCTUATIONS

The central assumption of this work is that fibrobectin-
coated beads report fluctuations of the cytoskeleton, and not
�or only to a much smaller extent� those of the cytosol. Since
the firm connection of the beads to the actomyosin network
is usually not immediately apparent by optical observation, it
is essential to confirm our assumption by other means. For
this purpose, we have shown in our experimental paper �12�
that the intracellular random motion of the coated beads is
highly correlated with the motion of markers in the elastic
extracellular matrix �ECM�, to which the cytoskeleton is at-
tached via focal adhesions at the basal side of the cell. We
will derive in the following the statistical properties of the
extracellular marker fluctuations.

In our simplified network model, the remote end of each
stress fiber is anchored to the substrate beneath the cell. We
treat this substrate as a homogeneous, linear elastic half

6This is a simplifying assumption. In reality, a part of the myosin
motors within the fiber might work in opposite directions. Another
part might be inactive. Therefore, Nm should be interpreted as the
effective number of myosin motors which actually contribute to the
fiber contraction.
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space with Poisson ratio � and Young’s modulus Y, much
stiffer than the fiber network. The forces acting in the stress
fiber network will then cause small, time-dependent defor-
mations of the substrate, which can be monitored experimen-
tally by measuring the spatial shifts of markers attached to
the substrate �traction microscopy�.

The shift of a marker at the origin due to single localized

traction force F� applied at position r�= �x ,y� is provided by
the Boussinesc solution �23�:

�R� M = K�r��F� , �26�

where the matrix Green’s function K�r�� is given by

K�r�� = 
1 + �

�Y
� 1

r3��1 − ��r2 + �x2 �xy

�xy �1 − ��r2 + �y2� .

�27�

The positions of the substrate-bound FAs are denoted by

R� s, the marker position by R� M, and the difference vectors by

r�s=R� M −R� s. The shift of the marker is then the linear super-
position of the individual stress fiber contributions:

�R� M = �
s=1

Smx

K�r�s�F� s. �28�

Because the Green’s function decays as 1/r, only markers
in the near vicinity of at least one FA show appreciable fluc-
tuations. Since the typical distances between the FAs is large
�assuming the spiderweb geometry with a modest number of
rather long fibers�, the motion of those significant markers is
dominated strongly by the single contribution of their nearby
FA. We can therefore assign only one marker to each FA and
denote it by the same index s. The displacement of marker s

directly reflects the individual stress fiber force F� s. Note that
this is in contrast to the case of the intracellular bead, which
always “feels” the equally weighted sum of all the attached
stress fibers.

The marker follows the stress fiber force instantaneously,
because it is attached to a purely elastic medium. In contrast
to the bead �which is part of a viscoelastic medium and
thereby moves diffusively for very short lag times ���0� the
marker has a relaxation time �0 close to zero. We thus expect
for the marker MSD a plateau extending to very short lag
times.

IX. CHOICE OF PARAMETERS

Next we present and motivate our choice of the model
parameters. The subset of experimental data which is com-
patible with the drifting well model, i.e., the MSD traces
which show an extended plateau of slope �0 and a superdif-
fusive regime with slope �2, can be characterized by only
three values: the binding time �0 �actually, only an upper
limit is provided experimentally�, the binding range Rb, and
the transition time �1. On the other hand, we have a total of
11 microscopic model parameters for the acto-myosin sys-
tem, the stress fibers as a whole, the bead, and the cytosole.
There should consequently exist a 8-dimensional parameter

subspace which is compatible with the 3 experimental key
quantities. However, for almost all of the 11 model param-
eters a range of reasonable values can be extracted from the
literature. Within those rather narrow constraints, the “fit-
ting” of the model to the data becomes nontrivial.

The analytic mapping of the biophysical model onto the
four drifting well properties also allows for independent
tests: For example, the collective stiffness of the well �fiber
network� can be measured separately by active microrheol-
ogy. In the following, comments on the various quantities are
presented as footnotes.

The microscopic model parameters are as follows:

Parameter Unit Fit Ref. val. Ref./Com

Myosin pulse force fm pN 1 1–5 �24�
Myosin pulse width �m ms 0.1 0.1–1 �25�
Myosin duty cycle �m 1 1 0.8–1 �26�
Myosins per fiber Nm 1 104 �104� �27�
Fiber length Lf �m 10 14 �29�
Fiber radius rf �m 0.1 0.1–0.25 �16�
Fiber Young mod. Ef kPa 100 1450–632 �30�
Fiber buildup time Tf s 103 	200 �31�
Fibers per bead Nf 1 10 �50 �32�
Bead radius rbead �m 2 2 �12�
Cytos. viscosity � Pa s 2 1.4 �5�

Using the microscopic parameters from above, we can
compute the collective properties of single stress fibers and
the friction of the bead in the background cytosol:

Property Unit Val. Com.

Friction constant � pN s/�m 37.7 Eq. �16�
Fiber stiffness kf nN/�m 0.314 Eq. �17�
Fiber noise PSD � f nN2 �s 1 Eq. �22�
Fib. force growth rate Ḟf

pN/s 10 Eq. �21�

Finally, the resulting characteristic quantities of the drift-
ing well model are as follows:

Quantity Unit Val. Com.

Friction constant � pN s/�m 37.7 Eq. �16�
Well stiffness kw nN/�m 1.57 Eq. �23� �33�
Well noise PSD �w nN2 �s 5 Eq. �24� �35�
Well velocity vw nm/s 17.9 Eq. �25� �36�

X. RESULTS AND DISCUSSION

A. Intracellular bead motion

We next discuss the simulation results of the biophysical
model �solid lines in Figs. 8�a�–8�c�� and compare them di-
rectly to experimental data �symbols�.

Figure 8�a� shows the MSD versus lag time. The simula-
tion was based on the microscopic model parameters as pre-
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sented above. Note that our fit was aimed at the subclass of
experimental trajectories which show a clear plateau as well
as a ballistic regime. In this case �spherical symbols� the
agreement is nearly perfect. However, the experimental data
also contained almost purely diffusive trajectories �triangular
symbols�, as well as intermediate cases. We presume that
such behavior is due to beads that have bound not at all, or
not permanently, to the stress fiber network.7 The average
over all measured MSD traces �performed in double-

logaritmic representation� is plotted with quadratic symbols.
Figure 8�b� shows the turning angle distributions at a lag

time of 0.1 s, and Fig. 8�c� at 10 s. The theory reproduces
the characteristic transition from antipersistent �b� to persis-
tent �c� behavior, but overestimates the degree of antipersis-
tence �persistence� at very short �long� lag times.

B. Alternative remodeling dynamics

In the model described so far, we have assumed that the
prestress generated by the fibers increases linearly at small
times and finally saturates. This simple choice was sufficient
to reproduce the experimental data. However, it is quite un-
realistic that all fibers run through the same developmental
curve ��t�, simultaneously and without any individual pa-
rameter fluctuations. Also, this model describes transient be-
havior and not a stationary random process, as is usually
assumed when a MSD is computed.8 Biologically, we would
rather expect each fiber to develop independently from the
others. In addition, it will not remain in the mature state
forever, but be remodeled on long time scales. It is therefore
instructive to investigate the effect of a more complex re-
modeling dynamics on the general characteristics of the
MSD. The main purpose of this section, however, is to
clarify which features of the fiber dynamics are essential for
reproducing the data and which have no detectable effect on
the MSD or TAD. In particular, it will be demonstrated that
mutually independent, but long-time persistent fluctuations
of the fiber forces are sufficient.

Figure 9�a� shows a case of oscillatory dynamics,
described by a developmental parameter

�k�t� =
1

2
+

1

2
sin
�k + 2�

t

Tk
� . �29�

The phase shifts �k were chosen randomly for each fiber,
equally distributed between 0 and 2�. To avoid periodic dy-
namics, which would lead to a periodic MSD versus lag
time, the individual remodeling periods Tk where also
equally distributed between 1

2T0 and 3
2T0. We used a long

average period T0 of 1000 s. The result �line with quadratic
dots� shows the same basic features as our original transient
model �plotted with a dashed line�. This demonstrates that
only the long-time persistence of the forces is required to
move an elastically bound bead with constant velocity.

In Fig. 9�b� we explore the effect of a prestress with cor-
related Gaussian fluctuations around some average value.
�The white noise of the PSD �w was additionally present in
the following simulations.� The developmental parameter
was chosen as

�k�t� = �̄ + ��k�t� , �30�

where the random processes ��k were Gaussian distributed
with variance �2—i.e., P�����e−�1/2���2/�2

—and had an ex-
ponentially decaying temporal correlation with time constant
�c—i.e., ����t����t��	=�2e−�t−t��/�c. �Note that this correlated

7One could imagine a scenario where the bead repeatedly couples
and decouples from the network associated with diffusive and bal-
listic phases of motion. In a different context, it has been shown
�37� that such a two-phase stochastic process can exhibit a power
law MSD with fractional exponent. This is actually observed in
some of our experimental trajectories.

8For a transient process, even the ensemble-averaged MSD will
depend on the absolute time t, in addition to the lag time �.

FIG. 8. �Color online� Comparison of simulation results �solid
lines� with experimental data �symbols�. �a� MSD versus lag time
for the bead motion. Spheres: samples with a pronounced plateau.
Squares: ensemble average. Triangles: samples without a plateau.
�b�,�c� Turning angle distributions for lag times of 0.1 s and 10 s,
respectively.
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noise has a Lorentzian power spectrum with rollover time �c.
For longer lag times, it becomes effectively white. It there-
fore qualitatively resembles the noise of ATP-powered motor
proteins.�

As shown in Fig. 9�b�, the resulting MSD grows approxi-
mately diffusive for ���c and saturates for all longer lag
times. For the longest correlation time �c=1000 s �square
symbols�, where the white “background noise” starts to
dominate, a subdiffusive regime appears at small lag times.
Nevertheless, the overall curve is not compatible with the
measurements. We conclude that the MSD features observed
in the experiments cannot be explained by a fluctuating pre-
stress with finite correlation time �c, but require long-time
persistent forces.

C. Extracellular marker motion

Based on the analysis of Sec. VIII, we directly monitored

the force F� k which the kth stress fibers exerts on its focal
adhesion. By introducing an effective isotropic elastic stiff-

ness kef f, we defined displacements �R� k=F� k /kef f. The value
of kef f, reflecting a combination of the stiffnesses of the sub-
strate and of the focal adhesion contact, was chosen to fit the
experimental data. The other simulation parameters were
identical to the case of intracellular bead motion. Note that

�R� k can be interpreted as the displacement of the focal ad-

hesion itself, relative to its unstrained position R� k in the sub-
strate.

Based on the fluctuations of �R� k, we computed a MSD
versus lag time, as plotted in Fig. 10. For this simulation, we

used the oscillatory remodeling dynamics, as described
above, however with an average remodeling period T0 of
3000 s. The effective stiffness kef f was 5 nN/�m.

We note that the predicted, extended plateau at small lag
times is clearly visible in the experiment. On extremely long
time scales, even the persistent prestress fluctuations can be
viewed as noise. We therefore expect an additional
asymptotic plateau in the marker MSD. The data show the
onset of this feature.

XI. SUMMARY AND OUTLOOK

The MSD of cytoskeleton-bound beads show a subdiffu-
sive to superdiffusive transition, accompanied with charac-
teristic features of the turning angle distributions, indicating
a change from antipersistent to persistent motion. In this pa-
per, we have interpreted this transition as a crossover be-
tween a flat and a steep power law, driven by noise and
persistent forces, respectively.

The generic physics of the system corresponds to the dif-
fusion of a particle within a slowly drifting potential well. As
a concrete biophysical model we proposed that the bead be-
comes a node in a dynamically remodeling network of stress
fibers. The collective properties of these fibers, such as elas-
ticity, force fluctuations, and maximum average force, have
been analytically estimated from a simple microscopic model
of the acto-myosin system. Choosing the microscopic param-
eters from within the narrow range of experimentally con-
firmed �or at least reasonable� values, quantitative agreement
with the data was achieved, for both beads bound to the
cytoskeleton and markers in the ECM.

Our model was based on several simplifying assumptions.
For example, we assumed an elastic fiber network sub-
merged in a viscous cytosol. However, active microrheology
shows that the cytoskeleton is not purely elastic, but has a
weak power-law response. First numerical simulations using
this realistic response function �not presented here� indicate
that the “horizontal” plateau in the MSD is then replaced by
a subdiffusive power-law regime with a small exponent. This
agrees with some of the measured MSD traces. Yet further
work is required to separate the contributions from colored
noise and from the complex response function.

Also, we aim to develop a more refined microscopic
model of the stress fibers, possibly resembling Huxley’s slid-
ing filament model of the muscle. A direct numerical simu-

FIG. 9. �Color online� MSD versus lag time for alternative re-
modeling dynamics. The dashed lines repeat the theoretical result
from Fig. 8�a�, corresponding to the transient case. �a� Oscillatory
dynamics. �b� Correlated Gaussian fluctuations, for three different
correlation times �c=1 s �spheres�, �c=10 s �triangles�, and �c

=1000 s �squares�.

FIG. 10. �Color online� MSD versus lag time for the markers in
the ECM. Symbols: experiment. Solid line: theory.
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lation of the dynamic cross bridge activity will provide a
detailed understanding of the average prestress produced in
each fiber and its temporal fluctuations, in particular under
realistic conditions of slow filament sliding.

In the present model, different possible remodeling dy-
namics were chosen “by hand.” As it turned out, the only
important factor to produce a ballistic regime in the MSD is
a sufficient degree of temporal persistence in the prestress
development. A realistic description of the fiber network’s
long-time remodeling will have to include processes such as
focal adhesion formation, actin polymerization, and depoly-
merization, myosin activation, as well as the biochemical
pathways controlling that behavior.

Future theoretical work could also include model exten-
sions that provide a MSD with a broad power-law regime
and fractional exponent, as observed experimentally. This
can be achieved, for instance, with a more detailed model of
focal adhesion formation, yielding fat-tailed distributions of
rupture lifetimes for the connected actin fibers.9

Even without these refinements, our model of cytoskeletal
fluctuations will help biologists to extract quantitative infor-
mation on cytoskeletal structure and dynamics from simple
bead diffusion experiments.
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APPENDIX: DIFFUSION IN A HARMONIC WELL

We consider a particle diffusing within an isotropic elastic

well of stiffness k, centered at the origin R� ctr=0� . The poten-

tial well U= �k /2�R2 produces a binding force F�ela��R� �=

−kR� , so that

F� �tot� = F� �rnd� + F� �fri� + F� �ela�. �A1�

The equation of motion can be written in the form

��
d

dt
+ k�R� �t� = F� �rnd��t� . �A2�

The response �Green’s� function G�t� of this linear system is
the special solution of the above equation for a �-like driving
force pulse:

��
d

dt
+ k�G�t� = ��t − 0� . �A3�

It is given by

G�t� =
1

�
��t − 0�e−�k/��t, �A4�

where ��t� is the Heaviside step function. The trajectory re-

sulting from a general random force F� �rnd��t� is then the con-

volution R� �t�=G�t� � F� �rnd��t� or

R� �t� =
1

�
�

−�

t

dt�e−�k/���t−t��F� �rnd��t�� . �A5�

To determine the statistical properties of the particle trajec-
tory, we consider the correlator

c��� = �R� ���R� �0�	 = �
−�

�

dt1�
−�

0

dt2e−�k/����−t1−t2�.

�F� �rnd��t1�F� �rnd��t2�	/�2. �A6�

We assume that the random force is isotropic white noise on
the time scale considered here:

�Fi
�rnd��t�Fj

�rnd��t��	 = �ij���t1 − t2� , �A7�

where � is the spectral power density of the noise in each
spatial dimension. If the actual random force fluctuations
have a variance F2 and a small, but finite correlation time �1,
the effective noise density is �=2F2�1. The vectorial auto-
correlation then reads

�F� �rnd��t1�F� �rnd��t2�	 = 2���t1 − t2� . �A8�

Inserting this into Eq. �A6� yields for the spatial correlator

�R� ���R� �0�	 =
�

k�
e−�k/���. �A9�

Its value at zero lag time, c�0�= �R2	= �

k� , describes the vari-
ance of the spatial fluctuations relative to the origin of the
coordinate system. The MSD can be easily computed from
the above correlator using the relation

�R2��� = ��R� ��� − R� �0��2	 = 2��R2	 − �R� ���R� �0�	�

=
2�

k�
�1 − e−�k/���� . �A10�

9As one of the possible scenarios, one can envision fibers which
are continuously building up a growing prestress �translated into
directed motion of the bead�, until their life ends prematurely by
rupture of the focal adhesion. If such yielding events follow Bell
kinetics and, if the rupture forces are exponentially distributed

around an average value F̄rup, one obtains a tunable MSD exponent

with a fractional value set by F̄rup �a mechanism similar to that used
in �9��. The exponential distribution of rupture times, in turn, could
be explained by the kinetics of the focal adhesion formation, when
an increasing number of parallel load-bearing elements are added to
the complex at constant rate, until the reinforcement is suddenly
terminated by some �perhaps biochemical� event with Poisson ar-
rival time statistics.
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purely elastic substrate, the distance between the marker and
focal adhesion is known, the amplitude of the force fluctua-
tions can be determined.

�36� This value agrees well with average drift velocities estimated
from our measured bead trajectories.

�37� S. Denisov, J. Klafter, and M. Urbakh, Phys. Rev. E 66,
046217 �2002�.
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