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Katerina E. Aifantis,§ Oliver Friedrich,‡ and Ben Fabry†*
†Department of Physics and ‡Institute of Medical Biotechnology, University of Erlangen-Nuremberg, Erlangen, Germany; and §Laboratory of
Mechanics and Materials, Aristotle University of Thessaloniki, Thessaloniki, Greece
ABSTRACT The pore size of biopolymer networks governs their mechanical properties and strongly impacts the behavior of
embedded cells. Confocal reflection microscopy and second harmonic generation microscopy are widely used to image
biopolymer networks; however, both techniques fail to resolve vertically oriented fibers. Here, we describe how such directionally
biased data can be used to estimate the network pore size. We first determine the distribution of distances from random points in
the fluid phase to the nearest fiber. This distribution follows a Rayleigh distribution, regardless of isotropy and data bias, and is
fully described by a single parameter—the characteristic pore size of the network. The bias of the pore size estimate due to the
missing fibers can be corrected by multiplication with the square root of the visible network fraction. We experimentally verify the
validity of this approach by comparing our estimates with data obtained using confocal fluorescence microscopy, which repre-
sents the full structure of the network. As an important application, we investigate the pore size dependence of collagen and
fibrin networks on protein concentration. We find that the pore size decreases with the square root of the concentration, consis-
tent with a total fiber length that scales linearly with concentration.
INTRODUCTION
The mesh size of the extracellular matrix (ECM) is an
important parameter that governs its mechanical properties
and influences the ability of cells to colonize and migrate
through the ECM (1–3). Artificial three-dimensional extra-
cellular matrices from self-assembled protein networks are
widely used for tissue-engineering applications and for
studying cell behavior in an environment that more closely
resembles the in vivo physiological situation of mammalian
cells (4,5). Knowing the exact pore size is crucial, because
the ability of cells to migrate through steric constrictions
drops sharply when the pore size falls below a critical value
(6,7). Moreover, the pore size of the network matrix strongly
influences cell behavior such as adhesion and polarization,
and therefore needs to be accurately measured (1,8,9).

Typical examples of self-assembled biopolymer net-
works, ubiquitously used for 3D cell culture, are three-
dimensional collagen matrices. They are composed of
randomly oriented fibers that form when monomeric
collagen polymerizes into a hierarchical structure (10–14).

Another important biopolymer network is fibrin, which
provides the structural scaffold for blood clots but is also
frequently used in tissue engineering applications and cell
culture (15,16). Fibrin networks form during coagulation,
when monomeric fibrin assembles into protofibrils that later-
ally aggregate into thicker fibers and occasionally branch to
form a percolated, three-dimensional structure (17).

Changes in fiber diameter and density strongly affect the
mechanics of both collagen and fibrin networks (18–21),
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as well as the adhesion, spreading, polarization, and migra-
tion of embedded cells (1,3–5,22). These biological effects
are attributable not only to the mechanical network pro-
perties or adhesive ligand density but also to the morpho-
logical structure of the network, most notably the pore
size. Because of the low solid (protein) fraction in these
networks, typically 0.05% to 0.5% (w/v), traditional
methods of measuring porosity are not sensitive enough to
be useful. In a similar way, hydrodynamic permeability
can only serve as an indirect measure of pore size and
critically depends on the validity of hydrodynamic models.
Rather, network morphology is best characterized by a mesh
size, or pore size, given by the 3D spacing of the fibers
within the interstitial fluid, which can be directly obtained
from microscopic images. Moreover, it is the pore size
and interfiber cross-link distance that most critically sets
the steric hindrance for the migrating cells and also the
network mechanical properties (18,23–27).

There are several approaches for quantifying the network
pore size from images of the network structure. Scanning
electron microscopy (SEM) has excellent resolution
(3,27–29) but requires the samples to be dehydrated and
thus can only image a potentially collapsed network struc-
ture. By contrast, light microscopy methods can be applied
to a fully hydrated sample even when it contains living cells.
A widely used imaging modality is confocal reflectance
microscopy (CRM) (5,6,10,11,30). This methodology offers
a fundamental advantage over confocal fluorescence micro-
scopy (CFM) in that the network need not be labeled with
fluorophores, which is both time consuming and expensive.
Moreover, less laser power is required to obtain the image
stack with CRM, making it possible to avoid cell damage
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during live-cell imaging (4,22,30). These advantages make
CRM a preferred method for simultaneous observation of
cell migration and network structure.

CRM has a major disadvantage, however. Because CRM
only detects light that is reflected back into the microscope
lens, it preferentially visualizes horizontal fibers. Thus,
CRM suffers from a blind spot in that it misses fibers with
an angle steeper than a certain cutoff angle (31). Therefore,
networks imaged with CRM appear anisotropic, and fewer
fibers are visible, resulting in a substantial overestimation
of the pore size of the network. In a similar way, second
harmonic generation microscopy (SHG), another popular
mode for imaging collagen, also suffers from an anisotropic
transfer function (13). If, however, the cutoff angle for the
missing fibers is known, it seems possible to correct for
the blind spot effect. Such an approach would allow users
to employ the convenient methods of CRM and SHG and
still evaluate the pore size distribution of the network
without bias.

Here, we introduce a method for determining the unbi-
ased pore size of a biopolymer network when it is imaged
with CRM and SHG. As a mathematically well-defined
and robust measure for the network pore size, we introduce
the nearest-obstacle distance (NOD). In the case of random
networks, regardless of isotropy or anisotropy, it can be
shown that the distribution of NODs follows a Rayleigh
distribution. Furthermore, if fibers oriented at an angle
above a cutoff angle are systematically removed from the
network, the NOD still follows a Rayleigh distribution
with a scaling parameter that is a monotonic function of
the cutoff angle (see the Supporting Material).

Therefore, we can fit a Rayleigh distribution to the distri-
bution of the NODs obtained from CRM and SHG images
and then simply rescale the distribution function by a
correction factor to predict the unbiased pore size distri-
bution of the full network. We verify the validity of our
approach by comparing the pore size distribution predicted
from CRM data with the pore sizes directly measured by
CFM on the same collagen samples. Furthermore, we
demonstrate how the NOD can be converted to a previously
established pore size measure—the covering radius trans-
form. Finally, we show how the pore sizes of collagen and
fibrin gels depend on protein concentration, and we compare
our data to theoretical predictions.
MATERIALS AND METHODS

Preparation of collagen gels

Collagen matrices were produced under sterile conditions and with all in-

gredients held on ice to avoid premature polymerization during the mixing

process. To avoid bubble formation, extra care was taken while mixing the

ingredients. For every experiment, a stock solution was prepared and

diluted with buffer solution consisting of 8 mL H2O, 1 mL 10�
DMEM, and 1 mL NaHCO3, adjusted to pH 10 with 1 M NaOH, until

the final concentration was reached. A 2.4 mg/mL collagen stock solution
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was mixed out of 1.2 mL Collagen R (2 mg/mL rat collagen type I; Serva,

Heidelberg, Germany) and 1.2 mL Collagen G (4 mg/mL bovine collagen

type I; Biochrom, Cambridge, United Kingdom). Moreover, 270 mL of a

0.25 M NaHCO3 buffer solution and 270 mL 10� DMEM (Biochrom)

were added. To adjust the pH to 10, 43 mL of a 1 M NaOH solution

was added. 1.2 mL of the mixture was pipetted in 35 mm cell culture

dishes and polymerized in a cell culture incubator at 95% humidity, 5%

CO2, at 37
�C. After 2 h, 2 mL of 1� DMEM complete medium was

added.
Preparation of fluorescently labeled collagen gels

To obtain fluorescent images of collagen gels, a fraction of the Collagen G

stock solution was labeled with 5-(and 6) carboxytetramethylrhodamine

succinimidyl ester (TAMRA-SE; Invitrogen, Carlsbad, CA) at 4�C accord-

ing to the manufacturer’s protocol. To minimize possible alterations of the

polymerized network due to the labeling process, the labeled Collagen G

solution was mixed with unlabeled stock solution at a volume ratio of

1:6. The mixture of collagen solutions was used to prepare the gels as

described above.
Preparation of unlabeled and labeled fibrin gels

Lyophilized, plasminogen-free human fibrinogen and a lyophilized human

a-thrombin solution (both from Enzyme Research Laboratories, South

Bend, IN) were rehydrated according to manufacturer instructions and

immediately frozen in aliquots at �80�C. Before the experiments, aliquots

were thawed and thrombin was kept on ice, whereas fibrinogen was kept at

room temperature. Both fibrinogen and thrombin were diluted with a buffer

solution of 0.15 M NaCl and 20 mM HEPES, pH 7.4, to twice the final

concentration for each, and fibrin gels were polymerized by mixing these

solutions 1:1 v/v. Polymerization was allowed for at least 30 min at room

temperature, after which 1 mL of buffer was added to prevent evaporation.

For fluorescently labeled fibrin gels, the fibrinogen stock solution was

labeled with TAMRA-SE at room temperature following the same protocol

used for collagen. A 1:6 v/v mixture of labeled and unlabeled fibrinogen

monomer was used to synthesize the gels.
Confocal microscopy imaging

Stacks of optical sections were acquired with an upright SP5X confocal

microscope (Leica, Wetzlar, Germany) equipped with a Leica 20� dip-in

water-immersion objective (NA 1.0). To measure the effect of the NA on

the cutoff angle, some of the images were also acquired with a Leica

20� water-immersion objective (NA 0.7) or a Leica 63� water-immersion

objective (NA 1.2), both corrected for imaging through a 170 mm glass

coverslip. CRM stacks were recorded by collecting the reflected light of

the 488 nm argon laser line in one channel. CFM stacks were simulta-

neously acquired by collecting light between 571 nm and 772 nm in a sec-

ond channel while the sample was also illuminated with a 543 nm HeNe

laser. All images were recorded at 512 � 512 pixels with a digital magni-

fication of 4.55, resulting in a pixel size of 317 � 317 nm; a total of 597

z-slices with a spacing of 335 nm were collected for each stack. Every

line was averaged three times during scanning.
SHG imaging

Collagen hydrogels were excited with a femtosecond-pulsed Ti:Sa-Laser

(Vision II, Coherent, Santa Clara, CA) set to 810 nm. SHG signals were

collected at 405 nm using a multiphoton microscope (TriM-Scope II,

LaVision Biotech, Bielefeld, Germany) with a Zeiss 40�, NA 1.1 water im-

mersion objective. Voxel size was 310 � 310 � 310 nm; scanning speed

was set to 1200 Hz with a 2� line average.
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Binarization of the image stacks

A binarized data set with pixel values of 1 (representing the solid

phase (fiber)) and 0 (representing the fluid phase) was obtained using a

template-matching algorithm that simultaneously performs a binarization

and skeletonization of the image stack (33). In the algorithm, small

subsets of the image stack are compared to a template representing a

diffraction-limited fiber cross section. Matching voxels are classified as

fibers based on a mismatch threshold that is iteratively optimized for

each image stack so that the final skeletonized network obeys a uni-

versal property of voxelized random line networks, that is, solid-phase

voxels most likely have three solid-phase neighbors in a 3 � 3 � 3

pixel neighborhood. All isolated solid-phase voxels are regarded as image

noise and are removed. The method is self-adapting, largely insensitive to

the signal and noise in the image, and free of user-selected parameters (33).

However, the pore size characterization and conversion presented in this

article do not rely on a specific skeletonization and binarization method.
Pore size evaluation from the distribution of NODs

In a three-dimensional binarized data set, the NOD, rnod, describes the

Euclidean distance from a 0-phase fluid point to the closest 1-phase solid

point (see Fig. 3 A, inset). To obtain the characteristic distribution, p(rnod),

of each data set, we sampled rnod at 10,000 randomly selected points.

Collagen networks closely resemble random networks, consisting of

straight line segments with a spatially homogeneous density of the line

centers and isotropic directions. For such a Mikado-like network, the distri-

bution, p(rnod), of NODs can be calculated analytically ((34) and see the

Supporting Material). In the limiting case where the line segments are

much longer than the average pore diameter, p(rnod) is given by a Rayleigh

distribution with a single parameter, rmean, which represents the mean value

of rnod,

pðrnodÞ ¼ rnod� ffiffiffi
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Because rmean is the only parameter needed to fit the Rayleigh distribution

to the measured p(rnod), rmean is a robust measure for the pore size.
Pore size evaluation using the covering radius
transform

A second method to determine the pore size distribution of a binarized fiber

network is the covering radius transform (CRT) (35). For every voxel of the

liquid phase, the Euclidean distance to the center of the next solid-phase

voxel is determined. This distance can be interpreted as the radius of a

pure liquid-phase sphere around that voxel. The CRT assigns every voxel

of the fluid phase the value of the radius of the largest possible liquid-phase

sphere, placed anywhere, that covers that pixel. This results in a complete

coverage of the fluid space by overlapping spheres with a distribution of

radii. For random biopolymer networks, the probability distribution of

the radii more closely resembles a normal distribution, where the maximum

of the distribution is approximately the average pore size of the gel.
Evaluation of fiber orientation

We determined the direction vector of short fiber segments by treating their

brightness distribution as a mass distribution, computing and diagonalizing

the moment-of-inertia tensor, and finding the easy axis of minimal inertia.

This easy axis points in the direction of the locally straight line segment.
From the binarized stack, 105 spherical volume segments with a radius of

3 pixels, with each sphere containing at least five solid-phase voxels,

were chosen randomly. The voxels were treated as mass points, located at

the voxel centers, with constant mass m ¼ 1 for all solid-phase voxels

and m¼ 0 for all liquid-phase voxels. After determining the easy axis of the

inertia tensor, the corresponding unit direction vector in spherical coordi-

nates was computed. This vector does not depend on the exact position

of the sphere’s center as long as the same solid voxels are enclosed. Finally,

a histogram was generated for the polar angle, q, of the direction vectors

from all fiber segments (see Fig. 3 B).

All analysis steps after acquiring the image data stack are summarized in

a flow chart (Fig. S3 in the Supporting Material).
RESULTS AND DISCUSSION

The blind spot in CRM and SHG

CRM is widely used to visualize biopolymer networks but
can only detect fibers that are oriented roughly horizontal
to the imaging plane, up to a certain cutoff angle, thus
missing the vertical fibers (the so-called blind-spot effect)
(31). To illustrate this effect, we imaged collagen gels
simultaneously in CRM and CFM. The data obtained with
CFM show an isotropic distribution of fibers, whereas the
data obtained with CRM preferentially show fibers aligned
horizontally with the imaging plane (Fig. 1).

To test whether the blind-spot effect using CRM also
occurs in other biopolymer systems, we repeated the same
measurements on fibrin gels. xz slices of the fibrin gels ob-
tained with CRM clearly demonstrate that in this case also,
vertical fibers are missing (Fig. 2, A and B, and Movie S1).

Similar to CRM, SHG also exhibits an emission probabil-
ity that depends on the orientation of the excited fibers. To
test whether this leads to a blind spot, we acquired 3D
data stacks of collagen gels with SHG in backscatter
mode. Again, vertical fibers cannot be detected by this im-
aging modality (Fig. 2, C and D, and Fig. S2 B).

To evaluate the pore sizes of biopolymer networks from
such directionally biased data, the missing vertical fibers
have to be taken into account. The brightness of fiber
segments imaged with CRM depends on their polar angle,
q (31). Only fibers with angles larger than qcut relative to
the optical axis can be observed (Fig. 3 A). This cutoff angle
depends predominantly on the NA of the imaging system.
To determine the value of qcut in our microscopy system,
with a 1.0 NA objective, we quantified the probability den-
sity distribution of collagen and fibrin fiber angles in the
CRM data (Fig. 3 B inset). The density distribution of polar
angles is identical for both biopolymers (Fig. 3 B inset),
indicating that the angular characteristics of light reflection
of collagen and fibrin fibers are similar. For comparison, we
also measured the probability density distribution of
collagen and fibrin fiber polar angles in the CFM data.
Both probability density distributions closely follow the
sinq dependency expected for an isotropic random line
network (Fig. 3 B and inset), which demonstrates that our
collagen and fibrin networks are indeed isotropic.
Biophysical Journal 105(9) 1967–1975



FIGURE 1 The blind spot in CRM. (A and B) Maximum-intensity projection of 3 xy slices (total thickness 1.0 mm) of a 0.3 mg/mL collagen gel imaged

simultaneously with CFM (A) and CRM (B). (C andD) Projected view of 15 xz slices (total thickness 4.75 mm) of the same sample imaged with CFM (C) and

CRM (D). Compared to CFM, CRM does not detect vertical fibers. Scale bars, 20 mm. Stacks were imaged with 512� 512 pixels with a size of 317� 317�
335 nm. To see this figure in color, go online.

1970 Lang et al.
Next, we define the cutoff angle, qcut, such that the inte-
gral over the isotropic angle distribution in the interval
(qcut, 90

�) (Fig. 3 B, inset gray area) equals the total integral
over the fiber angle distribution from the CRM data. The
cutoff angle, qcut, is 51� in our standard system with an
NA 1.0 objective for both fibrin and collagen data. To mea-
sure how the cutoff angle depends on the NA, we measured
the polar angle distribution also for fibrin gels imaged with
CRM using either a water immersion 63� objective with
NA 1.2 or a water immersion 20� objective with NA 0.7
(Fig. 3). As previously suggested (31), the cutoff angle
increases with lower NA (Fig. 3 B); for a 63�, NA 1.2
objective, we find that qcut ¼ 46�, and for a 20�, NA 0.7
objective, qcut ¼ 62�. Furthermore, similar cutoff angles
are also observed in SHG images of collagen networks in
backscatter mode (Fig. S2), where we find a cutoff angle
of qcut SHG ¼ 48� for a 40�, NA 1.1 water immersion
objective.
Rayleigh distribution of NOD as ameasure of pore
size distribution

For a simulated random line network with a line thickness
of one voxel, the distribution of NODs calculated for
Biophysical Journal 105(9) 1967–1975
randomly chosen points of the fluid phase follows a
Rayleigh distribution (see the Supporting Material). Net-
works with a high density have narrow distributions with
a prominent peak. For networks with lower densities, the
peak shifts to the right and the distribution broadens
(Fig. 4 A). Conveniently, the Rayleigh distribution relates
the peak and the width of the distribution curve using only
one free parameter—the average distance, rmean. Moreover,
it can be shown analytically that the distribution of NODs
in a random line network follows a Rayleigh distribution
even when the network is anisotropic (see the Supporting
Material). To demonstrate this also numerically, we simu-
lated an isotropic random line network and then removed
fibers at cutoff angles of 40� and 55�, respectively. For
both anisotropic networks, we found that the Rayleigh dis-
tribution fits the data perfectly, albeit with a right-shifted
peak and a broader distribution compared to the isotropic
network (Fig. 4 B), as expected. Therefore, the characteristic
mean value, rmean, of the Rayleigh distribution fitted to the
p(rnod) distribution of NODs can be taken as a measure of
the average pore size of the network imaged with either
CRM or CFM.

This independence of the Rayleigh distribution from
fiber anisotropy offers the opportunity to reconstruct the



FIGURE 2 The blind spot in fibrin gels imaged with CRM and in collagen gels imaged with SHG. (A) Maximum-intensity projection of 3 xy slices (total

thickness 1.0 mm) of a 1.0 mg/mL fibrin gel imaged with CRM. (B) Maximum-intensity projection of 15 xz slices (total thickness 4.75 mm) of the sample

image in A. Similar to the collagen gels shown in Fig. 1, vertical fibers in fibrin gels are missing. (C and D) SHG images of a 0.3 mg/mL collagen gel. (C)

Maximum-intensity projection of 3 xy slices (total thickness 0.93 mm). (D) Maximum-intensity projection of 15 xz slices (total thickness 4.65 mm) of the

sample image in C. Similar to CRM (Figs. 1 and 2 B), SHG images preferentially show horizontal fibers. To see this figure in color, go online.
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unbiased network pore size from CRM and SHG images
and to correct for the blind-spot effect. It can be analyti-
cally shown that the rmean,unbiased of an isotropic network
and the rmean,biased of the same network but with invisible
fibers above a cutoff angle are related by a factor that is
simply the square root of the fraction of the visible fibers
(see the Supporting Material). For a cutoff angle of 51�,
this correction factor is Ocos(51�) ¼ 0.793. The correction
factor is constant for different network densities and only
depends on the optical cutoff angle, qcut, of the imaging
system:

rmean;unbiased ¼ rmean; biased �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos qcut

p
: (2)

At first glance, an overestimation of the pore size by
25% from uncorrected CRM images may not seem dra-
matic. However, several recent reports have demonstrated
that cell migration in a porous environment critically
depends on pore size, with a surprisingly sharp cutoff below
which cells cannot migrate (6,7). A 25% change in pore
size around a mean diameter of 2 mm, for instance, was
associated with a >10-fold change in transmigration effi-
ciency (6).
Comparison with the CRT

To compare the pore sizes obtained using the NOD method
with the pore sizes obtained using the established CRT
method (35), the scaling factor between the two measures
was numerically determined for simulated isotropic net-
works (see the Supporting Material). The average pore
radius given by the CRT, rCRT, is larger by a factor of f ¼
1.82 than the rmean,unbiased obtained with the NOD method.

rCRT ¼ 1:82 rmean; unbiased

¼ 1:82 � rmean;biased �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos qcut

p
: (3)

For random isotropic networks, the factor, f, relating the
pore sizes obtained with the two methods is independent
of the imaging setup and the cutoff angle.
Application to collagen data

To test whether these analytical and numerical results also
hold for real biopolymer networks, we applied our method
to a set of collagen gels polymerized at different monomer
concentrations imaged with the 20� dip in objective
Biophysical Journal 105(9) 1967–1975



FIGURE 3 Distribution of fiber orientation. (A) In CRM, the brightness

of fiber segments depends on their polar angle q, as illustrated by different

shades of red (more saturated color indicates brighter CRM signal). Only

fibers with angles larger than qcut relative to the optical axis, can be

observed. This cutoff angle depends on the NA of the objective lens. (B)

Distribution of polar angles of a fibrin network measured with CRM and

three different water immersion objectives (20�, 0.7 NA (red line), 20�,

1.0 NA (gray line), and 63�, 1.2 NA (green line)) compared to the distri-

bution of polar angles for a fibrin network measured with CFM (black solid

line). The polar angle distribution of the fluorescent data set follows the

expected sin(q) distribution of an ideal, isotropic network (black dotted

line). The fraction of fiber segments that are visible in CRM is given by

the ratio of the integrals of both frequency distributions. As expected, a

higher NA increases the fraction of visible fibers. (Inset) Distribution of

polar angles of a fibrin (gray line) and a collagen (blue line) network

measured with a 20�, NA 1.0 water immersion objective with CRM, and

in a collagen network measured with CFM (black solid line) that follows

the expected sin(q) distribution of an isotropic network (black dotted

line). The cutoff angle, q cut, is chosen so that the gray area equals the in-

tegral of the polar angle distribution for the CRM data. To see this figure

in color, go online.
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(NA 1.0). For each gel, we obtained a CRM and CFM data
set and measured the distributions of NODs. For all concen-
trations imaged, the rnod distributions followed Rayleigh
distributions for both CRM and CFM. As expected, the
CRM data consistently showed larger pores than the CFM
data (Fig. 5, A–D). With decreasing collagen concentrations,
these distributions broadened and the maxima shifted to
Biophysical Journal 105(9) 1967–1975
larger pore sizes. The quality of the Rayleigh fit was very
high, with correlation coefficients between r2 ¼ 0.987 for
2.4 mg/mL collagen gels and r2 ¼ 0.997 for 0.3 mg/mL
collagen gels. The CRM data of fibrin gels and the SHG
data of collagen gels also followed a Rayleigh distribution
(Fig. S2 A), thus further confirming that the NOD of random
biopolymer networks is Rayleigh distributed, irrespective of
imaging mode or protein composition.

We then computed the rmean,biased by fitting a Rayleigh
distribution (Eq. 1) to the anisotropic CRM data, and
predicted the unbiased distribution of NODs for an isotropic
network according to Eq. 2. The Rayleigh distribution
predicted from the CRM data and the measured distribution
from CFM data show excellent agreement for all collagen
concentrations (Fig. 5, A–D), confirming the validity of
our method.

We next predicted the CRT pore size, rCRT, for different
collagen gels from the fit of the Rayleigh distribution to
the CRM data according to Eq. 3. The predicted rCRT was
then compared to the directly measured rCRT from the
CFM images. We found a close agreement between
predicted and directly measured pore sizes for the dif-
ferent collagen concentrations (Fig. 5 E), confirming the
validity of Eq. 3 for converting the different pore size
measures.
Relationship between pore size and protein
concentration

Our data show that collagen gels polymerized at higher
monomer concentrations have smaller pore sizes, consistent
with previous findings (6,19). Moreover, by analyzing the
relationship between protein concentration and pore size
for both collagen and fibrin, it is possible to address the
question of whether higher monomer concentrations are
stoichiometrically incorporated into the fibers, and whether
the incorporated monomers contribute to increased fiber
length or instead to increased fiber thickness.

We can take advantage of the fact that the scaling factor,
rmean, of the Rayleigh function only depends on the total
fiber length/unit volume, l ¼ Nl=V, and not on fiber thick-
ness, according to rmean ¼ 1=2

ffiffiffi
l

p
(see the Supporting Mate-

rial). N is the number of fibers, and l is the average length of
the fibers.

As Nl � c, with polymer concentration c, it follows that
l � c=V and rmean � 1=2

ffiffiffi
c

p
.

If protein monomers are stoichiometrically incorporated
into fibers, and if they contribute only to fiber lengthening
and not to fiber thickening, we expect that the pore size in-
creases with concentration cm according to rmean ~ cm

�1/2.
The pore sizes determined for collagen polymerized at
concentrations between 0.6 and 2.4 mg/mL and for
fibrin polymerized at concentrations between 0.125 and
8 mg/mL closely follow this prediction (Fig. 6). However,
for very high fibrin concentrations and accordingly small
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pore sizes, the relationship deviates from the expected
square-root dependency (Fig. 6), suggesting that pore sizes
<1 mm cannot be reliably resolved.

Collagen polymerization is known to be strongly influ-
enced by the source of the collagen (36) but also by pH
and temperature (18,19,27,38), which differ between pro-
tocols from different laboratories. Previous studies (39)
have reported a stronger relationship between collagen
monomer concentration and pore size, according to rmean
~ cm

�1. Our gels were polymerized at 37�C and with pH
10, however, which leads to a faster polymerization (38)
compared to the more widely used pH 7 or lower
(19,20,38), and therefore may have contributed to these
differences. Furthermore, it has been suggested that fluo-
rescent labeling of collagen might affect its polymerization
behavior (40). Even though we do not see systematic pore
size differences between fluorescently labeled and unla-
beled collagen, our CRM-based method avoids this issue
altogether.
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CONCLUSION

We have shown here analytically, numerically, and experi-
mentally that the NOD distribution of isotropic and an-

isotropic random line networks, such as reconstituted
biopolymer networks, follows aRayleigh distribution.More-

over, if a fraction of the network fibers cannot be visualized
for technical reasons such as the blind-spot effect in CRM or

SHG imaging, the unbiased pore size distribution of the
network can still be recovered by a simple rescaling of the

Rayleigh distribution, if the fraction of invisible fibers is
known. For an isotropic network, the fraction of invisible fi-
bers can be estimated from the polar angle distribution of fi-

ber orientations. As an important biophysical application of
this approach, we investigated the dependence of the pore

sizes of self-assembled collagen and fibrin networks on pro-
tein concentration. We find that the pore size decreases with

the square root of the protein concentration, consistent with a
total fiber length that scales linearly with concentration.
rmean,biased measured 
mean,unbiased measured 
mean,unbiased predicted 

rCRT measured 
CRT predicted 

ation [mg/ml]

2.4 mg/ml

1.5 2.5

1 2 3 4 5
rNOD [μm]

FIGURE 5 Blind spot correction. (A) From the

binarized reflection data, the NOD is determined

(green squares) and fitted with a Rayleigh distribu-

tion (gray line). Rescaling this distribution with a

correction factor according to Eq. 2 yields a predic-

tion for the distribution of NOD for CFM data, as

indicated by the red arrows. The distribution of

the NODs calculated from a binarized fluorescent

data set obtained for the same collagen sample

(blue squares) is correctly predicted by the rescaled

Rayleigh curve (this curve is not a fit to the mea-

surements). (B–D) Repeating this procedure for

different collagen concentrations from 0.3 mg/mL

to 2.4 mg/mL gave excellent agreement between

predicted and measured distributions. (E) Average

pore size, rmean, biased, for different collagen con-

centrations calculated from reflection data (black

line), blind-spot corrected (rmean,unbiased; blue

dashed line) with Eq. 2, and converted to the corre-

sponding mean CRT values (rCRT; red dashed line)

with Eq. 3. All predicted values are in good agree-

ment with the measured data from fluorescent im-

ages (solid lines). The error bars indicate the SD

between different fields of view (n ¼ 8) of the

same samples. To see this figure in color, go online.
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FIGURE 6 Concentration dependence of the average pore size of fibrin

(red) and collagen (black) gels. Average pore size, rmean,unbiased, recon-

structed from 3D CRM data versus protein concentration. The error bars

indicate the mean5 SD from different collagen gels (n R 3) and different

fields of view (n R 5 for each gel). Both data sets are in good agreement,

with a power law with an exponent of �0.5 (gray dashed line), as expected

for stoichiometrically polymerizing networks where monomer addition

contributes to fiber lengthening but not to fiber thickening. The gray area

illustrates the range (r < 1 mm) where the pore sizes cannot be reliably

measured. To see this figure in color, go online.

1974 Lang et al.
SUPPORTING MATERIAL

Five figures, one movie, reference (41) and supplemental information

are available at http://www.biophysj.org/biophysj/supplemental/S0006-

3495(13)01086-2.

We thank Dr. Martin Vielreicher, Institute of Medical Biotechnology, for

help with SHG imaging.

This work was supported by grants from the German Science Foundation

(DFG), the Emerging Fields Initiative of the University of Erlangen-Nur-

emberg, and the European Research Council (Starting Grant 211166

MINATRAN).
REFERENCES

1. Cukierman, E., R. Pankov,., K. M. Yamada. 2001. Taking cell-matrix
adhesions to the third dimension. Science. 294:1708–1712.

2. Pedersen, J. A., and M. A. Swartz. 2005. Mechanobiology in the third
dimension. Ann. Biomed. Eng. 33:1469–1490.

3. Zaman, M. H., L. M. Trapani, ., P. Matsudaira. 2006. Migration of
tumor cells in 3D matrices is governed by matrix stiffness along with
cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA.
103:10889–10894.
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SUPPLEMENTARY INFORMATION  

Movie S1   Comparison of CRM and CFM. Projected views of 3 x-y slices (total thickness 

1 µm) (top) and 15 x-z slices (total thickness 4.75 µm) (bottom) of the same field-of-view of a 

1 mg/ml fibrin network are imaged simultaneously in fluorescence mode and reflectance 

mode, and are switched back and forth in rapid succession to visualize missing fibers, similar 

to a blink comparator for astronomical images. Vertical fibers that can be seen in fluorescence 

mode are not detected in reflectance mode due to the blind spot effect. 
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Fig. S1     Different concentrations of collagen monomers influences pore size. X-y projec-
tions of CFM (A-C) and CRM (D-F) images (3 slices, total thickness 1 µm) from collagen gels 
polymerized at different monomer concentrations of 0.6 mg/ml (A,D), 1.2 mg/ml (B,E) and 2.4 
mg/ml (C,F). With increasing concentrations, the pore sizes become smaller and the network 
denser. The scale bar of 20 µm applies to all panels. Stacks were imaged with 512 x 512 pixels 
with a size of 317 nm x 317 nm x 335 nm. Fluorescence mode images appear denser compared 
to reflection mode images because of the blind spot effect.
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Fig. S2: NOD distribution and blind spot effect from SHG images of collagen. (A) Distri-
bution of the nearest obstacle distance of a 0.3 mg/ml collagen network from an image stack 
obtained with SHG follows a Rayleigh distribution with a very high fit quality of r²=0.994; same 
raw data as shown in Fig. 2C,D. (B) Distribution of the polar angles of the SHG signal from a 
0.3 mg/ml collagen network shows systematic deviations from the sinθ dependency expected 
for an isotropic network. The polar angle distribution is similar to data obtained with CRM. The 
cut-off angle under SHG for a 40x NA=1.1 objective is 48°.     



x

y
z

raw 
reflection/SHG 
data stack

Binarized/skeletonized
data stack

multiply with 
conversion factor 
1.82

raw 
fluorescence 
data stack

compute
polar angle
distribution
and θcut

    CRT 
pore size 

x

y
z

perform
covering
radius 
transform

 rCRT 

compute nearest 
obstacle 
distance (NOD)

fit to Rayleigh
distribution

Binarized/skeletonized
data stack

 θcut Histogram of NODs

rmean,biased 

Histogram of NODs

rmean = Fluo 
pore size

Distribution of 
maximum fitting 
spheres 

average

Rayleigh pore size
= rmean,unbiased 

compute nearest 
obstacle 
distance (NOD)

correct for missing 
fibers with factor 
√cos(θcut)

fit to Rayleigh
distribution
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scence data are not required for obtaining the pore size distribution of networks and were only 
performed for validation of our method, which is based on confocal reflectance data.



Theory of pore sizes in random line networks 

In order to characterize the stochastic geometry of random line networks, a frequently used 

parameter is the average pore size rpore. It is determined by finding, for a representative 

fraction of network pores, the largest spheres that can be fit into that pores and then 

computing the average of the radii of these maximum spheres. While this can be done 

numerically in a straight forward way, this definition of pore size is not suited very well for 

exact analytical calculations. Therefore, we suggest as an alternative measure the most 

probable nearest obstacle distance σ for randomly chosen test points and show that it is 

directly related to the pore size.  

We start our investigations with a ‘Mikado’-like network model that has two parameters, the 

length l of the line segments and the volume density ρ of their centers. It is possible to 

compute the distribution p(rnod) of nearest obstacle distances analytically in this model. In the 

limit of zero line length, the Mikado model contains the case of point networks. More 

interesting is the opposite limit, where l is much larger than the average pore size. In this case, 

the Mikado model converges towards a more general model that represents any random line 

network with a large persistence length. Indeed, the single system parameter in this limiting 

case is the overall line density λ, i.e. the total line length per unit volume. This parameter only 

sets the spatial scale of the network, and no other details matter for the distributions p(rnod) or 

W (rpore). For example, a network composed of random circles with identical overall line 

density would yield the same universal Rayleigh distribution p(rnod) as the Mikado model, 

provided the radius of the circles is much larger than the average pore size. We compare these 

analytical results to a numerical simulation that is directly based on the exact analytic 

geometry of points and lines, thus avoiding any possible artifacts arising from voxelation.  

After demonstrating perfect agreement of the simulations with the analytic results, we use the 

simulations to determine the pore size distribution for line networks of various density 

parameters λ. As expected from scaling arguments, the average pore size rpore = cσ is simply 

proportional to σ, allowing us to determine the conversion factor as c ≈1.82.  

Distribution of nearest obstacles distances p(rnod), accessible volume fraction Q(r) and pore 

sizes  

We consider random biphasic networks, in which every point of 3-dimensional space either 

belongs to phase 0 (pore, liquid) or phase 1 (material, solid). In order to map out the 

stochastic geometry of the network, one can repeatedly choose a random point R0=(x,y,z ) 

within the 0-phase of the network and the find its ‘nearest obstacle distance’ r0(R0), defined as 

the Euclidean distance from that point R0 to the closest point of the 1-phase (Fig. S4(a)). The 

network is then characterized by the distribution p(rnod) of the nearest obstacle distances.  

 Closely related to p(rnod) is the ‘accessible volume fraction’ Q(r), defined as the fraction of 

the 0-phase in which a sphere of radius r (from now on called a r-sphere) could be centered 

without overlapping the 1-phase (Fig. S4(b)). In general, the dimensionless quantity Q(r) has 

the value Q(r =0)=1 and decreases monotonically for all radii r>0.  



The complementary quantity 1 − Q(r) is the fraction of 0-phase for which an r-sphere 

overlaps the 1-phase. It corresponds to the probability that a random 0-phase point R0 has a 

nearest obstacle distance rnod smaller than r, or  

   ( )      (      )  

              ∫  (    )     
 

 
.      (1) 

The derivative of this equation with respect to r shows that Q(r) is just the negative 

cumulative probability of p(rnod): 

  (      )   
 

  
 ( ).     (2) 

While both quantities carry the same information about the network, the cumulative Q(r) is 

more convenient for analytical considerations, as will be demonstrated below.  

Another way to characterize pores of a network is to find the maximum sphere that fits to each 

pore and to define the ‘pore size’ rpore as the radius of this maximum sphere. The concept is 

also illustrated in Fig. S4(c). We denote the distribution of pore sizes by W (rpore).  
 

 

Figure S4: 2D illustration of various statistical measures used for networks of line segments. 

(a) Nearest obstacle distances rnod (thin lines) for a few selected points (circles). (b) 

Accessible volume (shaded areas) for spheres of a given radius. (c) Maximum spheres fitting 

into network pores; thereby defining the pore sizes rpore. (d) A homogeneous, isotropic 

random distribution of straight line segments. The segments have a prescribed length l and 

their center points a spatial density of ρ. (e) Classification of line segments in the 2D Mikado 

model. 1-group (squares): Centers within r-sphere. 2-group (full circles): Centers outside r-

sphere but with partial overlap. 3-group (empty circles): Remote segments without overlap. (f) 

2D illustration of an r-sphere (green), a concentric spherical shell of radius R (gray) and a 

specific point (red) within this shell. From all line segments centered at the red point, only 

those can intersect the r-sphere with orientations falling into a cone of apex angle ω. 
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(b)(a)
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Random Line Networks: The Mikado model  

In the following, we consider random networks in which the 1-phase consists of straight line 

segments of fixed length, with isotropic orientations and a homogeneous distribution 

throughout the 3D volume. We refer to this model as the Mikado model.  

Each individual line segment (LS) can be described by its center point and a unit direction 

vector. In order to avoid ambiguities, we require that all unit vectors have a positive z-

component and thus ‘point upwards’ (Fig. S4(d)). The two parameters of the Mikado model 

are the length l of the LSs and the volume density    
 

 
  of their center points, where N is 

the number of line segments within a volume V.  

Consider first the extreme case l → 0, where all LSs degenerate into their center points. The 

configuration of LS-centers throughout the volume is a spatial Poisson process with ‘event 

rate’ that is identical to the volume density ρ. On average, a randomly placed r-sphere will 

contain a number of  

       ( )    
 

 
         (3) 

LS-centers. The probability Q(r) that not a single LS-center lies within the r-sphere is given 

by the Poisson probability for k =0 events, which is  

 ( )          {               ( )}           ( )    (4) 

Therefore, in the case of the random point network, the accessible volume fraction is given by 

 ( )      
  

 
   

                (5) 

We now turn back to the general case l> 0. As before, we can write    

 ( )       ( )       (6) 

In order to compute nav(r), we note that with respect to a given r-sphere, the LSs can be 

classified into 3 groups (Fig. S4 (e)):  

 1-group with LS-centers inside the r-sphere.  

 2-group with LS-centers outside the r-sphere, but with partial overlap of the fibers.  

 3-group with LS-centers outside the r-sphere and with no fiber overlap.  

Only the groups 1 and 2 contribute to nav(r). The contribution of the 1-group is identical to the 

case of point networks above:  

     ( )   
 

 
    .      (7) 

Fibers belonging to group 2 consists of LSs with centers in a sphere of radius r +(l/2) around 

the center of the r-sphere. We now consider in more detail the fibers in an infinitesimal 



spherical shell of radius R around the center of the r-sphere, with 0<R<r+(l/2). This R-shell 

contains a number of  

                                     (8) 

candidates for intersection. Among them, only those LSs will actually overlap the r-sphere 

that have orientations within a certain cone (Fig. S4(f)). This cone has an apex angle of ω = 2 

arcsin(r/R) and the corresponding solid angle is 
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Since the total solid angle available for LS orientations is Ωtot =2π (according to our 

convention that all unit direction vectors are pointing upward), the intersecting LSs amount to 

a fraction of  ( )       (   √  (
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). We conclude that the average number of 

actual intersections from LSs within the R-shell is  
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The total contribution from all LSs of group 2 fibers is obtained by integration over the 

relevant R-shells: 
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This integral can be performed analytically. Using the abbreviation  
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one obtains    
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By adding the contributions of both relevant groups, nav(r)=nav,1 (r) + nav,2 (r), and using Q(r) 

=exp(-nav(r)), we arrive at an analytic expression for the accessible volume fraction in the 

Mikado model. Defining another useful abbreviation  

 ( )   * (  
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+,       (14) 

the result can be cast into the form  

 ( )     
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 .    (15) 

It correctly contains the limit of point networks, since  (l/r) → 0 for l → 0. All the differences 

between point and LS networks are included in the ‘perturbation function’  (l/r). 

From the accessible volume fraction Q(r), we immediately obtain the distribution of nearest 

obstacle distances p(rnod =r)= -d/dr Q(r) in the Mikado model. With increasing rnod, this 

distribution starts with p(rnod = 0) = 0, develops a single peak and then decays exponentially 

for distances much larger than the average pore size Rpore of the network.  

Mikado model in the long fiber limit  

We next consider the case l » r, where the LSs are much longer than the typical distances of 

interest. Since p(rnod) is exponentially small for distances beyond the average pore size, this 

limit can also be interpreted as l » Rpore. Note that this is a typical situation for networks of 

semi-flexible fibers, such as collagen.  

It is straight-forward to show that in this limit the perturbation function diverges  

as  (
 

 
)  

  

  
. One therefore obtains  
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which is the ‘right half’ of a Gaussian bell curve with standard deviation 

         √     .       (17) 

The corresponding distribution of the nearest obstacle distances is a Rayleigh distribution 
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The most probable nearest obstacle distance, i.e. the value of r at which p(r) is maximum, is 

given by σ. We note that the accessible volume fraction in Eq.(16) depends only on the ratio 

r/σ. Therefore, all nearest obstacle distance distributions     ( ) should collapse onto a 

universal distribution when the distance r is measured in units of σ. In the long fiber limit, a 

dense and a dilute Mikado network cannot be distinguished from each other, if the spatial 

scale is unknown.  
 



 

 

Relating σ to line density  

It is remarkable that in the long fiber limit of the Mikado model, the properties of the network 

are completely determined by the parameter combination ρl, which appears in the quantity 

    √    .  

Recalling the definition of ρ as the volume density of LS centers, we can write  

        
 

 
  

    

 
   ,                             (19) 

where Ltot is the total length of all LSs. The new density parameter λ corresponds to the total 

‘fiber’ length per unit volume. It follows that  

         √   .         (20) 

Numerical test of the Mikado model  

In order to test the predictions of the Mikado model, we have simulated random line networks 

and compared the resulting numerical p(rnod) with the analytical results above.  

In the simulation, each line segment (of constant length l) was numerically represented by its 

center coordinates and a unit direction vector, as depicted schematically in Fig. S4(d). 

Initially, a list of N such line objects was generated, with the center points distributed 

randomly throughout a cubic simulation box of linear dimension L (with homogenous density 

  
 

 
 

 

  ) and with random, isotropic direction vectors (more precisely, in order to avoid 

boundary effects, we extended the simulation box on each side by l/2 and distributed a 

correspondingly larger number of N
∗ 
= N(L + l)

3
/L

3 
line centers within this extended box.). 

 The distribution p(rnod) was determined by randomly choosing K = 10
5 

test points 

        within the simulation box, finding the nearest obstacle distance rnod(Rk) for each test 

point and then computing a histogram of these distances. The distance rnod(Rk) is found by 

first computing the distances rkn between test point Rk and all the lines n of the network and 

then finding the smallest of those values. Note that the distance rkn between a point and a line 

segment can be obtained exactly (without any ‘voxelization’ required).  

For the numerical test of the Mikado model in the long fiber limit, we prescribed the density 

parameter λ, set L = l = 1 and computed the required number of fibers as   
   

 
. We found 

an excellent agreement between the analytical prediction and the simulation (Fig. S5(a)).  
 

 



 

Relationship between the most probable nearest obstacle distance σ and the average pore size 

rpore  

For any real network, it is possible to compute the nearest obstacle distance rnod(R0) for each 

spatial point R0, resulting in a so-called ‘Euclidean distance map’ (EDM). The pore centers of 

the network can then be defined as the positions R0=R
(i)

max

 

of the local maxima of the EDM 

and the pore size distribution  W(rpore) is the distribution of the distance values 

r
(i)

pore=rnod(R
(i)

max) 
taken at these local maxima (1). 

Based on our numerically exact simulation of random line networks we have computed the 

pore size statistics W(rpore) and compared it to the corresponding distribution p(rnod) of nearest 

obstacle distances. As expected, W(rpore) is peaked at a larger value than p(rnod) (Fig. S5(c)). 

In the long fiber limit, the ratio rpore/σ between the average pore size and the most probable 

obstacle distance is a constant, i.e. independent from the density parameter λ of the network. 

This follows from the fact that the distribution p(rnod) is universal in length units of σ. To 

demonstrate the constant ratio, we have plotted rpore(λ) and σ(λ) double-logarithmically (Fig. 

S5(d)).  

Summary  

Here, we have theoretically explored random line networks, modelled as isotropic and 

macroscopically homogeneous distributions of straight line segments in 3D space. In the 

limiting case when the line segments are much longer than the average pore size rpore, the 

distances rnod of random test points to the nearest line segment are distributed according to a 

Rayleigh distribution  

     (    )  
    

     
 

 
(
    

 
) 

.       (21) 

 

The most probable distance σ (peak position of the distribution) is determined by the overall 

line density λ, i.e. the total line length per unit volume, by  

         √    .        (22) 

The average pore size rpore, defined as the radii of maximum spheres fitting into the pores, is 

proportional to σ, with rpore ≈ 1.82σ.  
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Figure S5: (a) Distribution of nearest obstacle distances in 3D networks of straight line seg-
ments, for three different density parameters λ. Analytical predictions of the Mikado model in 
the long fiber limit (dashed lines) are compared to numerical simulations (solid lines). The unit 
of length was set equal to the size of L of the simulation box, which in turn was equal to the 
length l of the line segments. (b) Distribution of the nearest obstacle distances p(r) (red line) and 
pore size distribution W(r) (black line with symbols) in a 3D network of straight line segments, 
for a density parameter of  λ= 100/L². (c) Most probable obstacle distance sigma (squares) and 
average pore size ravpore (circles) as a function of the density parameter λ. In the long fiber 
limit, the ratio is constant with rpore/σ ≈1.82
1.  Münster, S., and B. Fabry. 2013. A Simplified Implementation of the Bubble Analysis
 of Biopolymer Network Pores. Biophys. J. 104: 2774–2775.
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