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Abstract

Metallic materials are commonly used for load‐bearing implants and as internal fixation

devices. It is customary to use austenitic stainless steel, especially surgical grade type

316L SS as temporary and Ti alloys as permanent implants. However, long‐term, poor

bonding with bone, corrosion, and release of metal ions, such as chromium and nickel

occur. These ions are powerful allergens and carcinogens and their uncontrolled leaching

may be avoided by surface coatings. Therefore, bioactive glasses (BGs) became a vital

biomedical material, which can form a biologically active phase of hydroxycarbonate

apatite on their surface when in contact with physiological fluids. To reduce the high

coefficient of friction and the brittle nature of BGs, polymers are normally incorporated

to avoid the high‐temperature sintering/densification of ceramic‐only coatings. For

medical application, electrophoretic deposition (EPD) is now used for polymer (organic)

and ceramic (inorganic) components at room temperature due to its simplicity, control of

coating thickness and uniformity, low cost of equipment, ability to coat substrates of

intricate shape and to supply thick films in composite form, high purity of deposits as well

as no phase transformation during coating. Although extensive research has been con-

ducted on polymer/inorganic composite coatings, only some studies have reported

multifunctional properties, such as biological antibacterial activity, enhanced cell adhe-

sion, controlled drug release ability, and mechanical properties. This review will focus on

biodegradable coatings, including zien, chitosan, gelatin, cellulose loaded with anti-

bacterial drugs/metallic ions/natural herbs on biostable substrates (PEEK/PMMA/PCL/

PLLA layers), which have the potential of multifunctional coating for metallic implants.

K E YWORD S

bioceramics, biocomposites, biomaterials, biopolymers, bone and teeth implants

1 | INTRODUCTION

Stainless steel‐based implants are frequently used in orthopedic and

other applications. These implants have limitations due to their bioinert

nature and the potential of uncontrolled release of metallic ions under

physiological conditions, which restricts the use of stainless steel for

clinical applications (Rehman, Bastan, et al., 2017; Rehman, Ferraris,

et al., 2017; Torkaman et al., 2017). One of the inherent problems of

prosthesis implantation is the fixation and maintenance of a stable in-

terface between the device and the host tissue at the cellular and organ
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level (Kitsugi et al., 1996). The method of prosthesis fixation is based on

mechanical fixation (through screws, bolts, nuts, etc.), bone cement

fixation (pure or composite cement), biological fixation (simple porous

ingrowth or modified by electrical and pulsed electromagnetic field sti-

mulation), and direct bonding fixation (chemical) (Duan & Wang, 2006).

However, most frequent fixation problems are related to (i) infection,

(ii) wear, (iii) migration and failure of implants, and (iv) implant loosening

(Anthony et al., 1990; Geetha et al., 2009). These problems manifest into

osteolysis in the bone bed, which is the major cause of long‐term implant

loosening (Maloney et al., 1990; Purdue et al., 2006). Therefore, there is a

need for development of material for orthopedic implants that has a low

wear rate.

Wear is the mechanical removal of material during the process of

relative motion between two or more contacting surfaces, which can

affect the performance of joint prosthesis. Abrasive, adhesive, fatigue,

and corrosive mechanisms can be applied through the wear of metal

components of joint prostheses. In addition, severe wear followed by

mechanical damage may lead to the premature failure of prostheses

(Kamachimudali et al., 2003), and corrosion of bioimplants in the phy-

siological environment takes place via electrochemical reactions

(Gurappa, 2002; Manivasagam et al., 2010). The electrochemical reac-

tions that occur on the surface of the implanted alloy are identical to

those observed during exposure to seawater, that is, aerated sodium

chloride. Metals and alloys used as surgical implants induce passivity by

the presence of surface protective films, which inhibit corrosion and limit,

to some extent, the usage (Rondelli & Vicentini, 1999). Major types of

corrosion faced by currently used implant material are pitting, crevice,

galvanic, intergranular stress‐corrosion cracking, corrosion fatigue, and

fretting corrosion (Barbosa, 2016). It is, therefore, customary to use

austenitic stainless steels, especially surgical grade type 316L SS as

temporary implants (Kamachimudali et al., 2003). Surgical grade type

316L stainless steel orthopedic implants could corrode in the physiolo-

gical environment and release toxic metal ions, such as iron, chromium,

and nickel, which are powerful causes for allergies and carcinogens

(Hanawa, 2004). Failure analyses of grade implants have shown that

about 90% of them were triggered by pitting and crevice corrosion

(Sivakumar & Rajeswari, 1992).

To date, many aspects have been addressed by modifying the sur-

face of stainless steel and other metallic implants, such as titanium (Ti)

alloys. The surface modification of metals can improve the interface

between the implant and surrounding tissue at biological, chemical, and

physical levels (Pishbin et al., 2013; Seuss et al., 2015; Torkaman

et al., 2017). Surface coatings also address various other aspects, such as

bioactivity, corrosion resistance, and cell adhesion by fabricating com-

posite coatings, for instance, by thermal and plasma spraying of hydro-

xyapatite (HA) (Cordero‐Arias & Boccaccini, 2017; Radda'a et al., 2017).

The lack of bioactivity of metals has been addressed by using bioactive

glass (BG) (Ciraldo et al., 2019; Wajda et al., 2018), first invented by

Hench (2006), which supports the formation of bonds between the im-

plant and bone (Kumar et al., 2017). The mechanism might be the slow

release of calcium and silicon ions at critical concentrations, which sti-

mulate cell proliferation and growth. The relatively high stiffness of BG

can cause long‐term stress shielding in high load‐bearing applications

(Hench & Jones, 2015). Metallic ions, including silver, strontium, and

copper and many more are now incorporated in BG (Rehman, Bastan,

et al., 2017; Rehman, Ferraris, et al., 2017; Tejido‐Rastrilla et al., 2019;

Yang et al., 2018), and exhibit features, such as antibacterial effects and

angiogenesis (El‐Rashidy, Waly, Gad, Röther, et al., 2018; Kaya

et al., 2018; Goodman et al., 2013; Williams, 1987).

Composite coatings comprising biopolymers and BG reduce (i) the

stress shielding effect, (ii) inhibit the uncontrolled release of toxic ions,

and (iii) improve the attachment and proliferation of osteoblasts

(Mehdipour & Afshar, 2012). These support the cellular interaction be-

tween the natural bone and implant. Thus, implanted medical devices

should also provide resistance against the growth of bacterial biofilms

(regardless of the implant material), which is one of the primary reasons

for implant failure (Navarro et al., 2008). Consequently, there is a need to

inhibit the growth of biofilms because they are resistant to the immune

system and antibiotics (Boccaccini et al., 2010; Ferraris et al., 2010, 2012;

Pishbin et al., 2013; Seuss et al., 2015). Systemic drug management is less

useful because of improper blood circulation and low concentration of

antibiotics at the injury site. However, the local delivery of drugs and

metallic ions, including copper, silver, zinc, and biomolecules (i.e., anti-

bacterial peptides) is a way to deal with infections because local delivery

systems maintain a high concentration of bioactive agents at the desired

site. Furthermore, local drug delivery systems allow the controlled re-

lease of drugs, thus decreasing possible cytotoxic effects associated with

uncontrolled drug release (Baino et al., 2016; Chen et al., 2014; Ouyang

et al., 2016; Pishbin et al., 2013, 2014). Nevertheless, extensive use of

antibiotics has triggered the growth of antibacterial‐resistant strains,

which are regarded now as a “global threat.” As a result, alternative

procedures for dealing with bacterial infections need to be pursued

(Ferraris et al., 2010, 2012; Pishbin et al., 2013).

2 | IMPLANTABLE BIOMATERIALS

Biomaterials are mostly of natural or synthetic nature, and normally

a product of multiple components that interact with the biological

system. They can be classified into the following groups: metal,

bioceramics, biopolymers, and biocomposites (Ballarre et al., 2020;

Gritsch et al., 2018a, 2018b; Thamaraiselvi & Rajeswari, 2004; Valiev

et al., 2008). Another classification of biomaterial was proposed by

Hench and Thompson (2010) for orthopedic implants on the basis of

their bioactivity and resorbability, for example, “class A” biomater-

ials, which are osteo‐productive (their surface is colonized by os-

teogenic stem cells in vivo); and “class B” biomaterials, which are

osteoconductive and act as a scaffold for cells (Jones, 2013).

Normal metals are bioinert and easy to mold into any shape.

They possess high mechanical strength, are fatigue‐resistance but

corrosive, and can cause toxicity due to active ion release. Passive

metals, however, including gold, titanium, chromium, zirconium,

have acceptable low corrosion rates, and their corrosion products,

although in small amounts, can be found in surrounding tissues

and can cause adverse effects (Williams, 1987). Therefore, in

modern medical engineering, these metals are coated with
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ceramics as these polymers have excellent elastic moduli and are

useful as scaffolds for complicated structures. Bioceramics are of

versatile nature (bioinert/active/degradable), of good biocompat-

ibility, and able to regenerate bone. They have been used for the

repair and reconstruction of damaged parts of the skeleton

(Hench, 1991). Natural forms of biopolymers are derived from

living organisms, including collagen, cellulose, chitosan, and syn-

thetic polymers, such as polyurethane, polytetrafluoroethylene,

polylactic acid, which can be fabricated with tailored properties

and architecture from different monomers. Synthetic biopolymers

have, however, better mechanical properties and controlled de-

gradation rates compared with natural polymers; thus, their de-

gradation product can cause some local effects, that is, lowering of

pH that may lead to cell or tissue necrosis (Mohanty et al., 2005).

Orthopedic implants are important for treating bone traumas

caused by disease or accident. Over the years, the demand for

implantable biomaterial that can be used in orthopedics, cardiol-

ogy, dental and vascular therapy, trauma, spine, and wound care

has risen sharply (Łapa et al., 2019, 2020; Unalan, Endlein,

et al., 2019; Unalan, Slavik, et al., 2019; Winkler et al., 2018). Now,

they have become standard practice in modern medicine and

range from small implants, such as bolts and nuts to stabilize

fractured bones or dental implants to replace teeth, to total hip

replacements. Metallic implants, including 316L stainless steel,

titanium, and cobalt–chromium alloys are those most extensively

used for fracture fixation and bone remodeling. Due to their

longstanding stability under a highly aggressive physiochemical in

vivo environment and outstanding mechanical properties, they

have good wear, corrosion, and friction resistance. But in the

physiological environment, these materials may be degraded and

trigger the release of unwanted metal ions that damage local tis-

sues, cause inflammatory reactions, and osteolysis of surrounding

tissue. These reactions can damage the fixation, which can be seen

as the possible origin of implant failure. Stainless steel implants

are considered inferior to Ti alloy implants with regard to os-

seointegration, biocompatibility, and corrosion resistance. Hence,

316L stainless steel is to date only used for short‐term bone

fracture fixation in the form of fracture plates, nails, and screws

(Sumita, 1997).

When the implant comes in contact with body tissue, a biofilm

can form on its surface. In the initial phase, bacteria engage passively

with the surface of the implant. During the later stage, a biofilm

develops that can grow by forming extracellular polymeric sub-

stances and polysaccharide intercellular adhesins, which are espe-

cially dangerous if caused by multiresistant bacteria contracted

during surgery; this can lead to infections and implant rejection

(Arciola et al., 2012).

With the increased demand for metallic implants for body part

replacements, it is, therefore, imperative to overcome the infection‐
related limitations of the materials by designing implants to be

infection‐resistant. Furthermore, the issue of low osseointegration of

orthopedic implant material with the adjacent bone tissue needs to

be addressed. As infections give rise to bacteria forming a biofilm on

the implant, implant surfaces must be functionalized to inhibit or

prevent biofilm growth. There are several methods, such as adding

silver ions or antibacterial drugs to the surface and modifying the

surface roughness (Campoccia et al., 2013).

3 | BONES, TEETH, AND HA

The main inorganic components of bone and tooth enamel are cal-

cium phosphate (Ca:P) comprising calcium cations together with

orthophosphate, pyrophosphate, and metaphosphate anions and

sometimes with hydroxide or hydrogen ions (Eliaz & Metoki, 2017).

Calcium phosphate (Ca:P) at a ratio of 1.67 has a similar composition

to natural bone and is the most widely used form of HA (Lertcumfu

et al., 2016). It can be extracted from natural sources or is prepared

in the laboratory. HA forms crystals in a physiological medium and

binds strongly to the bone; it is biocompatible, bioactive, and os-

teoconductive and is considered to be an excellent bone graft ma-

terial (Sobczak‐Kupiec et al., 2017). Nano‐HA (1–100 nm), which

possesses a high surface area, can easily be integrated into cells and

promotes osteoblast adhesion, differentiation, proliferation, and os-

teointegration (Mondal et al., 2017). Due to its uniform micro-

structure and chemical homogeneity, it enhances the calcium

deposition on its surface leading quickly to newly formed bone tissue

and inhibiting abnormal growth of cancer cells in bone, liver, and

throat. The physical properties (solubility, degradability, and me-

chanical behavior) depend on the particle size, and its degradation

rate can stimulate bone growth in a physiological setting and exhibits

excellent mechanical strength compared with bulk particles. A lot of

research has been done on synthesizing nano‐HA particles with

physical, mechanical, chemical, and biological properties similar to

natural bone. To improve the biological properties of the HA nano-

particles, a number of researchers have synthesized metal‐doped or

metal‐substituted HA nanoparticles. Ion substitution in the HA

structure, for example, replacing OH− ions with ions of comparable

charge and size, such as F− and Cl− is possible. The sites for PO4
3−

ions can also be substituted by silicate ions and calcium cations by

Ag+, Zn2+, Ce3+, Mg2+, or Sr2+. Some ions, such as Cu2+ occupy,

however, an interstitial position in the HA lattice structure. In a

partial exchange, fractions of anions or cations can be replaced by

substitution (Cacciotti, 2016).

Nevertheless, differences in ionic radii and surface charge for

the incoming versus departing ion can be critical. Doping ions of

different charge, for example, phosphate with carbonate ions, is also

conceivable. Under this condition, a positively charged vacancy is

created, which is then counteracted by the synchronized loss of one

calcium (Ca2+) cation and one hydroxyl anion (OH−). Metal doping or

ion substitution can change the physical properties of HA. Ion doping

has a wide range of applications in biomedical sciences, includ-

ing biocompatible coatings, enhanced bone regeneration, drug de-

livery, and biomarkers for medical and antimicrobial purposes

(Dorozhkin, 2013; Karthika et al., 2015; Ratnayake et al., 2017; Tite

et al., 2018).
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4 | RESPONSES TO IMPLANTS

Cell attachment is connected with the interaction of the biomaterial

with collagen, adsorption of proteins, and cells on biomaterial sur-

faces followed by bone formation. In a physiological environment,

the biomaterial can release ionic products, which increase local

concentration, for example, Ca2+ and PO4
3− ions, and the precipita-

tion of apatite layer on its surface bonds to bone (Choi et al., 2014).

Bone grafts and implants must be biocompatible and should not elicit

local or systemic toxic effects. Four kinds of tissue responses to

implants are known: (i) if toxic material is present, the surrounding

tissue will die; (ii) if a graft/material is nontoxic but inert, fibrous

tissue will surround the material; (iii) if the material is nontoxic and

bioactive, then an interfacial bond will be formed between the ma-

terial and tissue; (iv) if the material is nontoxic and dissolves, then

the surrounding tissue will be replaced. Many studies have shown

that all kinds of calcium phosphate are biocompatible both in vitro

and in vivo (Eliaz & Metoki, 2017). The first body response on the

implantation of a bone graft or biomaterial is inflammation, which is

followed by the ingrowth of preosteoblasts and their differentiation

into osteoblasts. This process can take a few days, depending on the

implanted material and is followed by osteoinduction, osteoconduc-

tion, and mechanical support, which takes weeks to years and de-

pends on the nature of the biomaterial.

5 | METAL IONS AS DOPANTS

Over the years, there has been a huge rise in antibiotic‐resistant
bacterial strains, which has limited the use of antibiotics in infection

control. Microorganisms express resistance against antibiotics

through a variety of mechanisms, that is, preventing the penetration

through the cell membrane, expulsion via efflux pumps, modification

of the target, and inactivating proteins. Another cause of the in-

effectiveness of antibiotics is biofilm formation around orthopedic

implants, as antibiotics cannot penetrate through biofilms (Li &

Webster, 2018).

Consequently, metal ions have been used as dopants in bio-

ceramics and biomaterials to induce resistance against fungi and

bacteria. These include silver, zinc, copper, cerium, strontium,

magnesium, nickel, titanium, europium, yttrium ions, and anions,

such as selenium and fluoride (Alshemary et al., 2015;

Ciraldo et al., 2018; El‐Rashidy, Waly, Gad, Hashem, et al., 2018;

El‐Rashidy, Waly, Gad, Röther, et al., 2018; Gritsch

et al., 2018a, 2018b; Łapa et al., 2019, 2020; Wajda et al., 2019).

Thus, the antimicrobial properties of these metals depend on their

physical state and surface properties, which rely on the method of

synthesis. Radovanovic et al. (2014) synthesized silver‐substituted
HA by the coprecipitation method, which showed antibacterial

action against Staphylococcus aureus, Klebsiella pneumonia, Provi-

dencia stuartii, and Citrobacter freundii. Unalan, Slavik, et al. (2019)

demonstrated that Cu‐HA coating deposited on titanium substrate

by the electrophoretic deposition (EPD) method had a significant

antibacterial effect on Escherichia coli strains. Co‐substitution of

Ag‐(tri‐calcium phosphate [TCP]) lattice with copper ions showed

even higher antibacterial properties than Ag‐TCP used against

E. coli and S. aureus, and co‐substitution of copper and magnesium

in TCP lattice and copper–zinc–HA coating increased the anti-

bacterial properties even more. Zinc incorporation as a secondary

ion in HA also improved MC3T3‐E1 cell proliferation, initial ad-

hesion, and antibacterial efficiency, and Sr2+ ions in combination

with copper in HA reduced the toxic effect in cells (Ciraldo

et al., 2020; Huang et al., 2016).

The mechanism for the antibacterial action of metallic ions in

bioceramics (HA, calcium phosphate) is not entirely clear. It is be-

lieved that potent ions enter the bacterial cell disturbing the in-

tracellular ATP production that interrupts the DNA replication

activity. They accumulate inside the bacteria changing the membrane

permeability by affecting the steady release of lipopolysaccharides

and proteins. The metallic ions produce reactive oxygen species with

constituents of the bacterial membrane and wall that modify the

bacterial structure leading to its death (Gutierrez et al., 2011). The

response of surrounding cells toward synthesized biomaterial is also

crucial for biomedical application (Supova, 2015). When a bone graft

is implanted in the body, it undergoes immediate body inflammation,

hemorrhaging, and the formation of new blood vessels. After the

implantation, osteoinductive proteins trigger the migration of me-

senchymal stem cells into the graft site, where they change into

osteoblasts and osteoclasts. Bone grafts take about 1 month to be-

come part of the body when new bone is formed around the old,

necrotic bone. A recent study has shown that cells behave distinctly

to different types of implant material as the osseointegration be-

tween biomaterial and cells depends on material surface properties,

such as chemistry, topography, and surface energy. These char-

acteristics determine the adsorption of biological molecules on the

surface of the biomaterial and their orientation. Cell adhesion mostly

involves van der Waal's or ionic forces, which are short‐term and

rapid and induce signal transduction, promote transcription, and

regulate gene expression in the presence of biological fluid followed

by proliferation and differentiation.

Deligianni et al. (2005) have shown that surface roughness and

hydrophobicity determine the surface charge, which influences cell

attachment and protein adsorption on positively/negatively charged

surfaces. Furthermore, it was reported that the orientation and 3D

structure of adsorbed proteins on biomaterial affect cell morphology,

proliferation, and differentiation. Additionally, the size of the parti-

cles has a significant influence on cell attachment; human bone‐
derived cells MG‐63 and U‐2OS, for instance, were shown to respond

more quickly to minor variations in chemistry and surface properties

compared with other cells. Biological studies displayed that both

human and animal osteoblasts (MC3T3‐E1, MG‐63, and SaOS‐2) at-
tached more readily to HA and TCP leading to increased cell pro-

liferation (Czekanska et al., 2014). Xu et al. (2012) argued that

different shapes, sizes, and surface areas of HAs affect the biological

properties of osteoblast proliferation, cellular activity, apoptosis, and

osteogenic gene expression.
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6 | COMPOSITE COATINGS BY EPD

The incorporation of metallic nanoparticles and natural herbs in

biomedical devices has gained much attention in the last few years

(Ferraris et al., 2010, 2017; J. S. Kim et al., 2007; Maráková

et al., 2017; Mokhena & Luyt, 2017; Pishbin et al., 2013). Although

nanoparticles have been used in numerous applications, their possi-

ble cytotoxic effect has not been studied adequately (T. S. Kim

et al., 2017; Wijnhoven et al., 2009). Moreover, natural herbs might

reduce the cytotoxic effect but maintaining antibacterial properties

requires a specific design for orthopedic implants. Therefore, a

technological need to improve metallic implant surface properties is

called for to develop multifunctional bioactive polymer/inorganic

composite coatings. Extensive research has, therefore, been carried

out on polymer/inorganic composite coatings by EPD. However, only

a few reports of multistructured coatings, which address aspects of

F IGURE 1 Fluorescence images of bone
murine stromal cells ST‐2 on stainless steel
coated (a) with chitosan‐gelatin electrophoretic
deposition (EPD); (b) with chitosan‐gelatin‐SiGe
NPs EPD; (c) chitosan‐gelatin EPD coating; and
(d) SS chitosan‐gelatin‐SiGe NPs EPD.
Magnification (a, b) at ×100 and (c, d) at ×200.
Nucleus staining in blue (4′,6‐diamidino‐2‐
phenylindole [DAPI]) and cell cytoplasm in red
(phalloidin). Taken from Aydemir et al. (2020)
with permission from Elsevier

F IGURE 2 Bacterial inhibition test over 24 h. Incubation of Staphylococcus aureus (a–c) and Escherichia coli (d–f) with bare stainless steel
(a, d); stainless steel coated with chitosan‐gelatin electrophoretic deposition (EPD) (b, e); stainless steel coated with chitosan‐gelatin‐SiGe NPs
EPD (c, f). Taken from Aydemir et al. (2020) with permission from Elsevier
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bioactivity, antibacterial activity, enhanced cellular attachment,

controlled drug release capability, and mechanical integrity have

been prepared (Aydemir et al., 2020; Boccaccini et al., 2006; Sun

et al., 2008; Zhitomirsky et al., 2009) (Figures 1 and 2).

Only recently, comprehensive research investigations focusing

on EPD of biodegradable coatings (e.g., chitosan/gelatin/zein loaded

with gentamicin/lawsone/curcumin and other substances) on bio-

stable substrates (polyetheretherketone [PEEK], polymethyl metha-

crylate [PMMA], titanium, 316L SS, etc.) and biodegradable

substrates have led to a new family of multifunctional coatings for

metallic implants (Ciraldo et al., 2019; El‐Rashidy, Waly, Gad,

Hashem, et al., 2018; Gritsch et al., 2018a; Rehman et al., 2018;

Unalan, Endlein, et al., 2019). Therefore, to address the increasing

problem of bacterial infections, biodegradable coatings will in the

future provide targeted drug delivery systems of incorporated nat-

ural herbs, metallic ions, and biological molecules to improve cor-

rosion and wear resistance, bioactivity, biocompatibility, and

antibacterial resistance of the metallic orthopedic implants (Virk

et al., 2019).

7 | CONCLUSIONS

In general, metallic implants have excellent mechanical proper-

ties; however, they are bioinert. Applying bioactive coatings,

especially metal ion‐substituted HA to the surface, to improve

corrosion and microbiology, has received wide attention. Several

techniques for coating inorganic material on metallic implants

have been proposed, including thermal spraying, plasma spraying,

biomimetic coating, sol–gel dip coating, pulsed laser deposition,

and EPD. All these methods have their own advantages/dis-

advantages that should be weighed up before biomedical appli-

cation (Besra & Liu, 2007).

To date, EPD allows for cheap and quick coating of various

materials with conductive substrates by immersing them in a sus-

pension containing particles of the material and applying an electric

field. For successful coating, several parameters related to EPD

processes need to be optimized before using metallic implants

coated with HA to combat antibacterial and antifungal properties,

and currently, EPD is the most frequently applied technique to

produce coatings, using ions, such as selenium, copper, and others

incorporated in HA.

Finally, although the fabrication and biocompatibility of the

various biomaterials, in terms of geometry, dimension, porosity,

photoactivity, and surface chemistry, which generate less toxic bio-

logical responses have been unique over the years. Their successful

development for theranostic therapies, that is, translation into a

clinical setting remains largely unexplored mainly due to long‐term
biocompatibility uncertainties. Therefore, future in vitro and in vivo

studies of functionalized biomaterial need to be carried out to im-

prove biological responses and to diminish side effects before these

can be translated into routine clinical settings (Kafshgari &

Goldmann, 2020) and (Tesler et al., 2021; Maqbool et al., 2021).
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