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a b s t r a c t

Camera images and video recordings are simple and non-invasive tools to investigate animals in their
natural habitat. Quantitative evaluations, however, often require an exact reconstruction of object
positions, sizes, and distances in the image. Here, we provide an open source software package to
perform such calculations. Our approach allows the user to correct for perspective distortion, transform
images to ‘‘bird’s-eye" view projections, or transform image-coordinates to real-world coordinates and
vice versa. The extrinsic camera parameters that are necessary to perform such image corrections and
transformations (elevation, tilt/roll angle, and heading of the camera) are obtained from the image
using contextual information such as a visible horizon, GPS coordinates of landmarks, known object
sizes, or images of the same object obtained from different viewing angles. All mathematical operations
are implemented in the Python package CameraTransform. The performance of the implementation is
evaluated using computer-generated synthetic images with known camera parameters. Moreover, we
test our algorithm on images of emperor penguin colonies, and demonstrate that the camera tilt and
roll angles can be estimated with an error of less than one degree, and the camera elevation with an
error of less than 5%. The CameraTransform software package simplifies camera matrix-based image
transformations and the extraction of quantitative image information. An extensive documentation
and usage examples in an ecological context are provided at http://cameratransform.readthedocs.io.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Camera traps, time-lapse recordings, or video recordings are
widely used tools in ecology research [1,2], for example for esti-
mating abundance [3], or for behavioral studies [4,5]. However,
such images inherently contain perspective distortions that need
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Fig. 1. Camera parameters. Intrinsic parameters: (a) the dimensions of the image in pixels wimage × himage , (b) the size of the sensor in mm (wsensor × hsensor) and
the focal length f in mm. Extrinsic parameters: (c) side view: the elevation specifies the height of the camera above a reference altitude, e.g. above ground, the
tilt specifies the angle between the vertical direction and the viewing direction (sensor normal). (d) top view: the offset (x, y) specifies the x, y coordinates of the
camera relative to a reference position (x = 0, y = 0), and the heading specifies the angle between the x-direction and the viewing direction (sensor normal). (e)
Image sensor: the roll specifies the angle between the lower sensor edge and the horizontal direction.

to be accounted for when accurate positions and distances need
to be measured. To correct for perspective distortions and to map
image points to real-world positions, it is paramount to know
the intrinsic and extrinsic camera parameters [6,7]. Intrinsic pa-
rameters are the sensor and lens properties. Extrinsic parameters
are the geographic camera position relative to landmarks in the
scene, the camera elevation, tilt/roll angle, and heading. Some of
the extrinsic parameters, however, are often difficult or imprac-
tical to measure in the field at the time of the recording. Here
we present methods to reconstruct unknown extrinsic camera
parameters from features in the image. The mathematical proce-
dure behind this reconstruction is based on linear algebra and is
implemented in the Python package CameraTransform. In addition
to reconstructing extrinsic camera parameters, CameraTransform
provides a toolbox to transform point coordinates in the image to
geographic coordinates. In the following, we explain the math-
ematical details, estimate the reconstruction uncertainties, and
describe practical applications.

2. Software

The complete software CameraTransform, released under the
MIT license, is implemented in Python 3.6 [8], an interpreted
programming language optimized for scientific purposes. For
maximum efficiency, several open-source libraries are used. For
numerical operations, such as matrix operations, we use the
Numpy library [9]. Statistical distributions are implemented using
the SciPy package [10]. The data are visualized using the Mat-
plotlib [11] and Pylustrator [12] libraries, and are stored using
the Pandas library [13].

3. Camera matrix

All information required for mapping real-world points (x,
y, z coordinates in meters) to image points are stored in the
camera matrix. The camera matrix is expressed in projective
coordinates, and is split into two parts — the intrinsic matrix and
the extrinsic matrix that correspond to the intrinsic and extrinsic
camera parameters, respectively [14].

3.1. Intrinsic parameters

The intrinsic matrix entries contain information about the fo-
cal length f of the camera in mm, the effective sensor dimensions
(wsensor × hsensor) in mm, and the image dimensions (wimage ×

himage) in pixels (see Fig. 1a,b). Specifically, the intrinsic matrix
entries are the effective focal length fpix and the center of the
sensor (wimage/2, himage/2)

Cintr. =

(fpix 0 wimage/2 0
0 fpix himage/2 0
0 0 1 0

)
(1)

fpix = f · wimage/wsensor (2)

The diagonal elements account for the re-scaling from pixels in
the image to a position in mm on the sensor. The off-diagonal
elements account for the offset between image and sensor coor-
dinates, whereby the origin of the image is at the top left corner,
and the origin of the sensor coordinates is at the center.

Eq. (1) only applies for the rectilinear projection of a pin-
hole camera (camera obscura). The CameraTransform package also
supports cylindrical or equirectangular projections, which cannot
be expressed in matrix notation. These are commonly used for
panoramic images (see Supplementary Information). The package
also supports corrections for radial lens distortions (see Supple-
mentary Information).

3.2. Extrinsic parameters

The extrinsic matrix consists of the offset (x, y, z) of the camera
relative to an arbitrary fixed real-world reference point (0,0,0).
Customarily, (x = 0, y = 0) is the position of the camera, and the
z-coordinate of the reference point is the ground level so that z
is the elevation of the camera. The x, y plane of the coordinate
system is usually the horizontal plane. Furthermore, the extrinsic
matrix contains the tilt angle αtilt, the heading angle αheading, and
the roll angle αroll of the camera (see Fig. 1c–e and Supplementary
Information).

The extrinsic parameters are used to rotate and translate the
intrinsic camera matrix, with the aim to map or project 3-D
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points from real-world coordinates to 2-D image coordinates.
The backprojection from a 2-D image point to 3-D real-world
coordinates, however, is inherently underdetermined due to the
lack of depth information in the image, and therefore requires
one additional constraint, e.g. the z-coordinate of that real-world
point or its distance to another real-world point. Supplementary
Information explains several strategies to perform the rectilinear,
cylindrical, or equirectangular backprojection.

4. Fitting of the extrinsic camera parameters

While the intrinsic camera parameters describing camera and
lens properties are usually well known, this is often not the
case for the extrinsic parameters that define the orientation of
the camera. Below, we start with the simplest case where the
heading and position of the camera is irrelevant and thus can
be set to arbitrary values (e.g. 0). This leaves only three free
parameters elevation, tilt and roll, unless the camera was properly
horizontally aligned, in which case roll is approximately zero. The
more complicated case where knowledge of camera heading and
position is important, e.g. for multi-camera setups, or if the image
needs to be geographically mapped, is described further below.

The CameraTransform package provides several fitting rou-
tines that allow the user to infer the extrinsic parameters from
characteristic features in the image.

4.1. Fitting by object height

If the true height of objects in the image is known, for example
for a group of animals, or more generally if distances between
points seen in the image are known, the camera parameters can
be fitted. This works especially well for the tilt angle as it most
sensitively affects the apparent object height (see Supplementary
Information, Fig. B.5b). To evaluate the fit parameter uncertain-
ties, we use Metropolis Monte-Carlo sampling [16,17]. The input
for this sampling process is a list of base (foot) and top (head)
positions of the objects. Optionally, also the position of the hori-
zon, landmarks, or reference objects such as rulers or survey poles
can be provided to improve the algorithm (for details see below).
The algorithm projects the foot positions from the image to real-
world coordinates, using the constraint z = 0, then projects the
head positions from the image to real-world coordinates, using
as a constraint the x position of the projected foot points. The
distance between these pairs of points is the estimated height
of the object. This height is assigned a probability according to
a known height distribution (e.g. the user does not need to know
the exact height but can instead provide an estimate for the mean
and standard deviation, or any non-Gaussian distributions of the
expected object heights).

The Metropolis algorithm starts with arbitrarily chosen pa-
rameter values (for elevation, tilt, and roll) and evaluates the
probability p0 assigned to these parameter values. Optionally,
the user can provide starting values, but usually the algorithm
converges well from a random initialization. Subsequently, small
random numbers are added to the parameter values, and the
corresponding probability p1 is re-evaluated. If the probability
increases, the new parameter sample is saved, if the probability
decreases, the new sample is only saved with a probability of
p1/p0, otherwise discarded. After many such iterations (typically
10000 in our case, which takes roughly 0.5 min on a standard
desktop PC), the saved set of parameter samples represents the
distribution of the fitted parameters (elevation, tilt, and roll).
From these parameter samples, one can finally compute the mean
value, denoting the best-fit parameter values, and the standard
deviation or credible intervals, denoting the uncertainty of the
parameters.

Optionally, if a horizon is visible in the image, CameraTrans-
form uses the horizon line as an additional constraint to deter-
mine the extrinsic camera parameters. Based on the elevation,
tilt and roll, the astronomical horizon line of a perfectly spher-
ical earth is projected onto the image, and its distance to the
user-provided horizon is minimized.

To evaluate this method, an artificial image (Fig. 2a) is created
using the CameraTransform package. A set of rectangles with a
width of 30 cm and a height of 0.75m are randomly placed at dis-
tances ranging from 50m to 150m, and subsequently projected
to the image plane using the following camera parameters: focal
length 14 mm, sensor size 17.3 × 9.7 mm with 4608 × 2592px,
camera height 16.1m, tilt angle 85.3◦, and roll angle 0.3◦. Using
the software ClickPoints [18], we mark the base and top positions
of these rectangles in the image (Fig. 2c) and provide them as
input for the sampling routine. We then investigate how the
estimated distribution of elevation, tilt angle, and roll angle vary
with the number of provided objects. The analysis is performed
with and without a horizon, for 5, 10, 25, and 50 randomly chosen
objects. The results show that by including a larger number n
of objects, the uncertainty of the parameter estimate (as indi-
cated by the width of the distribution) decreases roughly as n−0.5

(Fig. 2). Moreover, we find that both the camera elevation and
the tilt angle can be fitted with considerably less uncertainty if a
horizon is provided (Fig. 2g,h,i), compared to parameter estimates
without horizon (Fig. 2d,e,f).

Furthermore, the uncertainty of the parameter estimates de-
pends on the position of the objects in the image (see Supplemen-
tary Information). Objects that are evenly distributed throughout
the image provide better estimates compared to objects that are
clustered in the front or in the back of the image.

To demonstrate the fitting procedure, we analyze an image
(Fig. 3a) from a wide-angle camera overseeing an Emperor pen-
guin (Aptenodytes forsteri) colony at Pointe Géologie, Antarctica
(micrObs system, see [15]). The camera was positioned on an
island with an elevation above sea ice level of 19m as measured
by differential GPS. We estimate the extrinsic camera parameters
by providing the feet and head positions of 50 animals, assuming
an average height of 0.75m with an uncertainty that is left as a
free parameter. Furthermore, we assume that the z-position of
all animals is exactly equal as they are standing on the frozen
sea ice, which we assume to be flat. Fig. 3b shows the projected
top view based on the extracted extrinsic camera parameters. The
estimated extrinsic parameters are: elevation 18.9 ± 0.7m, tilt
84.6 ± 0.42◦, and roll −0.2 ± 0.41◦. The size variation of the
penguins, which was left as a free parameter for the metropolis
algorithm to sample, was estimated to be 0.059m. The obtained
parameters can now be used e.g. to estimate the area of huddles
in the image. For this purpose, the user paints the region occupied
by the heads of huddling penguins (pink line in Fig. 3a), and
the circumference of this region is transformed to a top-view
projection (pink line in Fig. 3d,f) and moved down by a distance
of 0.75m (one penguin height) to indicate the huddle area (green
line in Fig. 3d,f).

4.2. Fitting by geo-referencing

For small tilt angles, e.g. images taken from a helicopter
(Fig. 4a), the size of the objects in the image does not vary
sufficiently over the range of y-positions, and hence fitting by
object height fails. If in addition there is no visible horizon, such
images require a different method. If an accurate map or a high-
resolution satellite image of the area of interest is available,
point correspondences between the image and the map can be
used instead to estimate the camera parameters using an image
registration approach.
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Fig. 2. Influence of number of objects to determine camera elevation, tilt angle and roll angle. (a) Artificial image with randomly placed objects and horizon. (b) 3
points on the horizon and (c) foot and head points of 50 objects are manually selected. Metropolis-sampled uncertainty of the obtained parameters (elevation, tilt,
and roll) for a fit without using horizon points (d)–(f) and with horizon points (g)–(i), for different number of randomly selected (without replacing) objects (N =

5, blue line; N = 10, orange line; N = 25, green line; N = 50 red line; true value, black line). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In the example shown in Fig. 4, photographs of a King penguin
(Aptenodytes patagonicus) colony at the Baie du Marin (Possession
Island, Crozet Archipelago) have been taken from a helicopter fly-
ing approximately 300m above ground. We choose eight distinct
points that are recognizable in both the camera image and the
satellite image provided by Google Earth (Fig. 4a,c). To calculate
the cost function for image registration, we project the image
points (blue points in Fig. 4a) onto the satellite image (blue
points in Fig. 4c) and calculate the distance to the target points
(red points in Fig. 4b,c). The fit routine of CameraTransform then
computes the height and tilt of the camera as well as the camera’s
x,y-position and heading. The example in Fig. 4 with an rms
error of 0.76m between transformed image and target points
demonstrates that the fit routine matches all except one point,
which is the branch point of a river that has shifted from the time
the satellite image was taken (Fig. 4c).

5. Stereo images

If object sizes are unknown, a stereo camera setup can be used
to determine the size of multiple objects that are recorded from
two different positions and angles, provided that corresponding
points in both images can be unambiguously marked, and that
either the distance between the two cameras or the absolute size
of a single object in the image is known.

CameraTransform estimates the relative orientation of the cam-
eras by minimizing the back-projected distance of a marked point
in one image to the epipolar line of the corresponding point in
the other image (the epipolar line is the line in image B that
corresponds to a single point in image A), and vice versa (see
Supplementary Fig. C7). We found that a minimization of the
back-projection error in pixels is preferable to a more direct

minimization of the distance between the corresponding rays of
the points in the world space, due to scaling issues.

In contrast to existing stereo fitting methods (e.g. OpenCV),
our method is based on the Monte Carlo approach and provides
complete distributions of the estimated parameters to assess the
uncertainty of the estimates. Furthermore, our method directly
provides the relative orientation of the two cameras, whereas the
commonly employed Eight-Point Algorithm [19] only yields the
fundamental matrix, from which the relative orientation cannot
be unambiguously extracted.

6. Impact

We present the Python package CameraTransform for estimat-
ing extrinsic camera parameters based on image features, satellite
images, and images obtained frommultiple viewing angles. More-
over, CameraTransform allows users to geo-reference images or to
correct images for perspective distortions (e.g. to obtain top-view
or ‘‘bird’s-eye’’ view projections). The package has been previ-
ously applied for studying Emperor and King penguin colonies [5,
15,20], but is generally applicable for other quantitative image
analysis where the extrinsic camera parameters were not or could
not be measured in the field at the time of the recording. The
package is published under the GPLv3 open source license to
allow for continuous use and application in science. The doc-
umentation is hosted on http://cameratransform.readthedocs.io
and contains further details on how to install the package. The
documentation also provides numerous usage examples.
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Fig. 3. Fit of camera parameters using image objects. (a) Image taken with the micrObs system [15] of a penguin colony. The feet (green) and head (yellow) positions
of 50 penguins were manually marked (shown in inset (b)) and the circumference of a huddle was marked (purple, shown in inset (c)). The head and feet positions
are used to estimate the camera perspective (estimated head positions are shown as red squares) for projecting the image to a top view (d). Inset (e) shows the
uncertainty of the projected penguin positions and inset (f) shows the projected huddle circumference.

Fig. 4. Fit of camera parameters by image registration. (a) Camera image from
a helicopter flight at the Baie du Marin colony at the Crozet islands (Dec 09,
2014) [20]. (b) Satellite image provided by Google Earth. (c) Image fitted over
points in the image (blue) with points in the map image (red). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Appendix A. Camera Matrix

All information about the mapping of real-world points to image points
are stored in a camera matrix. The camera matrix is expressed in projective
coordinates, and can be split into two parts - the intrinsic matrix and the
extrinsic matrix [1]. The intrinsic matrix depends on the camera sensor and
lens, the extrinsic matrix depends on the camera’s position and orientation.

Appendix A.1. Projective coordinates
Projective coordinates, also known as homogeneous coordinates, are used

to represent projective transformations as matrix multiplications [2] whereby
the vector representation of a point is extended by an additional entry. This
entry defaults to 1, and all scalar multiples of a vector are considered equal:x

y
1

 =̂

s · x
s · y
s

 (A.1)

For example, the point (5,7) can be represented by the tuple of projective
coordinates (5,7,1) or (10,14,2) and so on. The scalar s need not be an



integer. Projective coordinates allow us to write the camera projection y⃗ as:

y1
y2
1

 =

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34

 ·


x1

x2

x3

1

 (A.2)

where x⃗ specifies the point in the 3D world, which is multiplied with the
camera matrix C to obtain the point in the camera image y⃗.

Appendix A.2. Intrinsic parameters
The intrinsic parameters are given by Equation (1) & (2) in the main

text.

Appendix A.3. Extrinsic parameters
To compute the extrinsic camera matrix, we first need the three rotation

matrices and the translation matrix:

Rtilt =

1 0 0
0 cos(αtilt) sin(αtilt)
0 − sin(αtilt) cos(αtilt)

 (A.3)

Rroll =

 cos(αroll) sin(αroll) 0
− sin(αroll) cos(αroll) 0

0 0 1

 (A.4)

Rheading =

 cos(αheading) sin(αheading) 0
− sin(αheading) cos(αheading) 0

0 0 1

 (A.5)

t =

 x
y

−height

 (A.6)

(A.7)

The extrinsic camera matrix then consists of the 3x3 rotation matrix R and
the 3x1 translation matrix t side by side, as a 4x4 matrix in projective coor-
dinates.

R = Rroll ·Rtilt ·Rheading (A.8)
T = Rtilt ·Rheading · t (A.9)

Cextr. =

(
R T
0 1

)
(A.10)
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The final camera matrix C is the product of the intrinsic and the extrinsic
camera matrix.

C = Cintr. · Cextr. (A.11)

Appendix A.4. Projecting from the World to the Camera image
To map a real-world point to a pixel of the acquired image, we first write

the real-world point p⃗world(x1, x2, x3) in projective coordinates:

p̃world =


x1

x2

x3

1

 (A.12)

The image point p̃im can then be computed according to:

p̃im = C · p̃world (A.13)

Finally, the point p̃im is converted from projective coordinates (which has 3
entries) to “conventional” coordinates p⃗im (with two entries) by division with
the additional scaling factor s (which is the 3rd entry of p̃im):

p⃗im =

(
p̃im1/p̃im3

p̃im2/p̃im3

)
(A.14)

where the subscript denotes the entry of the vector p̃im.

Appendix A.5. Projecting from the camera image to real-world coordinates
While projecting from the 3D real-world to the 2D image is a straight

forward matrix multiplication, projecting from the image back to the real-
world is more difficult. As the information of the 3rd dimension is lost during
the transformation from the real-world to the image, there exists no unique
back-transformation. An additional constraint is needed to transform a point
back to the 3D world, e.g. one of the 3D coordinates must be fixed. For
example, if the real-world point p⃗world has a known x3 coordinate (e.g. the
height above ground is known), and the image coordinates y1 and y2 are
given, the back-transformation can be performed as follows:
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y1
y2
1

 =

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34

 ·


s · x1

s · x2

s · x3

s

 (A.15)

=

c11 c12 c13 · x3 c14
c21 c22 c23 · x3 c24
c31 c32 c33 · x3 c34

 ·


s · x1

s · x2

s
s

 (A.16)

=

c11 c12 c13 · x3 + c14
c21 c22 c23 · x3 + c24
c31 c32 c33 · x3 + c34

 ·

s · x1

s · x2

s

 (A.17)

= C̃

s · x1

s · x2

s

 (A.18)

C̃−1 ·

y1
y2
1

 =

s · x1

s · x2

s

 (A.19)

This means that the information about the fixed 3D coordinate has to be
incorporated in the camera matrix. The inverse of the resulting matrix, when
multiplied with the image point in projective coordinates, gives the unknown
x1 and x2 entries of the real-world 3D point. After re-scaling the vector
entries (division by s), the known x3 value is added to the vector to retrieve
the real-world coordinates of the 3D point p⃗world.

For transformations that cannot be expressed as a matrix, the ray of
the given pixel is obtained, then transformed with the extrinsic matrix, and
finally the intersection of this ray with e.g. a coordinate plane is calculated.

Appendix A.5.1. Rectilinear Projection
This rectilinear projection is the standard “pin-hole” camera model, which

is the most common projection for single images. The 3D point (x, y, z) is
projected on a plane (xim, yim). The transformations here are given for a
camera pointing in z direction. For an arbitrary orientation of the camera,
the 3D point has to be first transformed to account for the camera’s position
and orientation.

xim = fx ·
x

z
+ xoffset (A.20)

yim = fy ·
y

z
+ yoffset (A.21)
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Where fx and fy are the focal lengths in pixel for the x and y direction (for
an ideal camera with square pixels, fx and fy are equal). The offsets account
for the origin (0,0) of the image usually being the top left corner and not the
center of the image.

Because information is lost when projecting from 3D to 2D, there is no
unique backtransformation. For every 2D point, however, a unique line in
3D space can be specified on which the 3D point lies. This so called “ray” is
defined as follows:

r⃗ =

(xim − xoffset)/fx
(yim − yoffset)/fy

1

 (A.22)

Appendix A.5.2. Cylindrical Projection
The cylindrical projection is a common projection used for panoranic

images. The 3D point is projected on the 2D surface of a cylinder. This
projection is often used for wide panoramic images, as it can cover the full
360◦range in the x-direction. The poles, however, cannot be represented in
this projection.

xim = fx · arctan
(x
z

)
+ xoffset (A.23)

yim = fy ·
y√

x2 + z2
+ yoffset (A.24)

The image rays are defined as follows:

r⃗ =


sin

(
xim−xoffset

fx

)
yim−yoffset

fy

cos
(

xim−xoffset

fx

)
 (A.25)

Appendix A.5.3. Equirectangular Projection
The equirectangular projection is a common projection used for panoranic

images. The 3D point is projected on the 2D surface of a sphere. The
projection can cover the full range of angles in both x and y direction.

xim = fx · arctan
(x
z

)
+ xoffset (A.26)

yim = fy · arctan
(

y√
x2 + z2

)
+ yoffset (A.27)
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The image rays are defined as follows:

r⃗ =


sin

(
xim−xoffset

fx

)
tan

(
yim−yoffset

fy

)
cos

(
xim−xoffset

fx

)
 (A.28)
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Appendix B. Sensitivity Analysis

Appendix B.1. Extrinsic Camera parameters
To evaluate the sensitivity of the perspective projection with respect to

uncertainties in the camera parameters, we computationally place objects of
1 m height in world coordinates at different distances from the camera (50
– 300 m) and project them to the camera image. The positions in the cam-
era image are then projected back to real-world coordinates using a different
parameter set where we vary the camera elevation and tilt angle. We use a
Panasonic DMC-G5 camera with a focal length of 14 mm and a sensor size
of 17.3×9.7 mm with 4608×2592 px. The camera is placed at an elevation
of 20 m with a tilt angle of 80◦. For the back projection, the elevation and
tilt are varied by ±10% (Fig. B.1) and for each parameter configuration the
apparent object height is calculated. Since we know the true object height,
the reconstructed object height indicates the error that is introduced by the
uncertainties in the extrinsic camera parameters. We find that the apparent
object height is only weakly dependent on variations in camera elevation re-
gardless of the distance between object and camera (Fig. B.1b). By contrast,
the apparent object height is sensitive to variations in the camera’s tilt angle,
especially for objects with a larger distance to the camera (Fig. B.1c).
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Figure B.1: Influence of elevation and tilt angle variation of ± 10%.
(a) Objects with a height of 1 m (dashed line, in (b),(c)) and different distances (50 m –
300 m) projected to the camera and back to the world with changed camera parameters.
(b) Object height for variation of the elevation parameter (20 m ± 10%). (c) Object height
for variation of the the tilt parameter (80◦± 10%).

Appendix B.2. Object positions
Fitting the camera parameters from objects in the image not only depends

on the number of objects used to estimate the camera parameters, but also on
the position of the objects in the image. As an estimate of this dependence,
we use an artificially create image with known camera parameters (focal
length 3863.64 px, image 2592 x 4608 px, elevation 16.12 m, tilt 85.3◦, roll
0.34◦), where we place 50 objects at different distances from the camera
(between 46 m and 151 m).

Using the objects in the foreground yielded better results (smaller uncer-
tainty) for the elevation parameter than using the objects in the background
of the image (see Fig. B.2). For the tilt and roll parameters, this behaviour is
reversed. Using objects from both foreground and background for the fitting
routine, by contrast, gave the best results for all parameters.
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Figure B.2: Influence of the position of the provided objects on the parameter
uncertainty.
On an artificial image (known camera parameters) with 50 objects where the foot and
head positions are manually marked. For every analysis, 10 objects are used. The 10
nearest objects (blue, shown in (a)), the 10 farthest objects (orange, shown in (b)) and 10
randomly distributed objects (green, shown in (c)). (d)-(f) The uncertainty of the camera
parameters (elevation, tilt, and roll) for the different conditions.

Appendix C. Fitting from Stereo Image

To test the reconstruction of the camera parameters from stereo images,
two sample images (Fig. C.3g,h) of a table with various objects of known size
are taken with a camera that is laterally moved between the images. A total
of 16 point correspondences in the two images are then marked, which serve
as the input for the metropolis sampling algorithm. During sampling, the
baseline (distance between the two cameras) remains fixed to unity and is
later re-scaled to fit the known sizes of the objects in the images, resulting in a
fitted baseline of 87 cm. This re-scaling is essential as point correspondences
alone cannot provide information on scaling. For the sampling, a total of
5 parameters (camera A: heading, roll; camera B: tilt, heading, roll) are
sampled, while the other parameters (camera A: position (x=0, y=0, z=0),
heading = 90◦; camera B: position (x=1, y=0, z=0)) are fixed to define a
unique reference frame.

After sampling, distances and object sizes in the image are measured by
assigning corresponding points in the stereo images. The calculated sizes
and distances are then verified with a ruler and are found to be accurate to
within ± 1 mm.
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Figure C.3: Fit of camera parameters by point-correspondences in a stereo
setup.
(a) Setup of the two cameras. (b,c,d,e,f) The fitted distributions of the parameter uncer-
tainties for camera A (b,c) and camera B (d,e,f). (g) Image of the left camera and image
of the right camera (h). Colored lines show distances that have been measured using point
correspondences.
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Appendix D. Lens distortions

The accuracy of the image transformation package can be further im-
proved by considering image distortions caused by imperfect camera lenses.
CameraTransform is currently able to deal with radial lens distortions but
not skew and tangential distortions that are usually less severe. Camer-
aTransform directly removes lens distortions when projecting from image
coordinates to world coordinates without the need to first compute an undis-
torted image, which would introduce rounding and pixelation errors. Con-
versely, it is also possible to apply lens distortions when back-projecting from
world coordinates to image coordinates.

CameraTransform implements two lens distortion models, the commonly
used Brown model and the ABC model. The Brown model moves image
points along the line formed by the image point and the optical axis point
radially according to a polynomial function of the radial distance with even
polynomial powers. This distortion model is also used e.g. by OpenCV or
AgiSoft PhotoScan. The ABC model uses a 4th order polynomial for the
radial shift and is used e.g. in PTGui.
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