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Abstract

The mechanism by which cells sense stresses and transmit them throughout the cytoplasm and the cytoskeleton (CSK) and by
which these mechanical signals are converted into biochemical signaling responses is not clear. Specifically, there is little direct
experimental evidence on how intracellular CSK structural elements in living cells deform and transmit stresses in response to
external mechanical forces. Existing theories have invoked various biophysical and biochemical mechanisms to explain how
cells spread, deform, divide, move, and change shape in response to mechanical inputs, but rigorous tests in cells are lacking.
The lack of data and understanding is preventing the identification of mechanisms and sites of mechano-regulation in cells.
Here, we introduce and describe three unique and easy methods for biologists to determine mechanical properties and

signaling events in cells.
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Introduction

Biomechanical studies of single cells and cell populations have
been of interest for some time and in recent years have
experienced a rapid development (Wang et al., 1993; Ezzell
et al,, 1997; Mierke et al., 2008, 2010; Mohl et al., 2009, 2012;
Faust et al,, 2011; Lange et al., 2013). Measuring cell mechanical
properties in the field of muscle physiology was at the forefront
and contributed significantly to the current understanding of
the mechanism of muscle contraction (Huxley, 1957; Ra et al.,
1999). The dynamics and kinetics of biochemical reactions
between the most important muscle contractile proteins, actin
and myosin, has been determined with high accuracy and
temporal resolution based on relatively simple measurements
of force and length changes of the skeletal muscle (Hill, 1965).
The regular, almost crystalline arrangement in the muscle
contractile apparatus allows the use of simple mathematical
models to interpret the measurements obtained macroscop-
ically in relation to molecular processes (Huxley, 1957; Hill,
1965; Kawai and Brandt, 1980).

In non-muscle cells, however, the conditions are more
complex. Their diverse mechanical function, including
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migration, division, phagocytosis, etc. are determined by
actomyosin motors. Numerous other regulatory molecules
and structure-forming proteins of the cytoskeleton are also
significantly involved (Hartmann and Spudich, 2012). This
is often augmented by time-varying, irregular network-like
structures of the cytoskeleton. The assignment of mechani-
cal measurements and biochemical processes in non-muscle
cells are, therefore, unclear. A particular difficulty is the
absence of macroscopic tissues containing the cells and that
experiments have to be performed in vitro. In the following
paragraphs, three novel methods for elucidating the
mechanical properties of live cells are described, which
can be easily applied in cell biological laboratories.

Methods for measuring mechanical cellular
properties

Mechanical cell stretcher

In a typical stretching experiment, uniaxial cyclic stretch is
applied (Faust et al., 2011; Bonakdar et al., 2012). The
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Figure 1 Mechanical cell stretcher. (A) A photographic view of the cell stretcher. (B) Cells are plated on an elastomeric PDMS-membrane coated with
about 1 mg/mL of extracellular matrix proteins, fibronectin (fibroblasts, endothelial cells) or collagen-I (keratinocytes). The membrane is stretched up to
30% by a linear motor. (C) Data from stretch experiments. Membrane stretching at 30% and 0.25 Hz for 1 h significantly increased the number of dead
(detached) cells for FB =fibroblasts, KC = kerationocytes, EC = endothelial cells. Error bars are given as standard error.

stretcher consists of a linear stage for uniaxial stretch and is
driven by a computer-controlled stepper motor (Fig. 1A).
Cells are plated on a flexible polydimethylsiloxan (PDMS)
substrate that is molded into the shape of a cell culture well
with 4.0 cm? internal surface and is kept in an incubator
under normal cell culture conditions (37°C, 5% CO,, 95%
humidity) (Fig. 1B). The substrates are coated with
extracellular matrix proteins in PBS overnight at 4°C, and
normally 10,000 cells are seeded 24 h prior to experiments.

As in most stretch experiments, the vulnerability is
defined by a viability test, which determines the ratio of dead
to alive cells after the stretch is performed. This is done by
taking randomly chosen positions on the substrate and
counting the number of single cells within these positions
before and after stretch. On the basis of life/dead-staining
(calcein-AM/propidium iodide), the fraction of dead cells is
determined (Tschumperlin and Margulies, 1998).

Sample experiments shown here give the response of
mouse fibroblasts (FB), keratinocytes (KC), and endothelial
cells (EC) to stretch (substrate/cell extension) in time-
matched (1 h) experiments at 30% stretch. The percentage of
dead cells at 0% stretch was between 3 and 4% for all cell
lines. When 30% stretch is applied, an increase in cell

vulnerability is observed of the following order: EC >KC
>FB (Fig. 1C). Since the mechanical stress increases in
direct proportion with cell stiffness and stretch amplitude
(Hooke’s law), the higher number of dead cells after stretch
may be due to stretch-induced cell stress arising from higher
internal prestress. To verify this, the magnetic tweezer device
can be used.

Magnetic tweezer

The magnetic tweezer device has been described in detail
(Alenghat et al., 2000; Kollmannsberger and Fabry, 2007).
For measurements, normally 2 x 10° cells are seeded
overnight into a 35mm @ tissue culture dish (Fig. 2A).
Thirty minutes before the experiments, the cells are
incubated with extracellular matrix protein-coated super-
paramagnetic beads of 5 um @ (Fig. 2B). A magnetic field is
generated using a solenoid with a needle-shaped core
(HyMu80 alloy, Carpenter, Reading, PA). The needle tip is
placed at a distance of 20-30 wm from a bead bound to the
cell using a motorized micromanipulator (Fig. 2C). During
measurements, bright-field images are taken by a CCD
camera at a rate of 40 frames/s. The bead position is then
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Figure 2 Magnetic tweezer setup. (A) Photographicimage of the magnetic tweezer device. (B) Tweezer tip close to a magnetic bead attached to the cell
(inset). (C) A high magnetic field gradient is generated by a needle-shaped high-permeability core of a solenoid attached to a micromanipulator. The
gradient force generated by the magnetic tweezer acts on superparamagnetic beads coated with extracellular matrix proteins of 1 mg/mL fibronectin
(fibroblasts, endothelial cells) or laminin-I (keratinocytes). Beads are bound to the cell surface via integrin receptors that connect the extracellular space with
the intracellular cytoskeleton. (D) Creep protocol. Typical bead displacement (blue dots) in response to a single force step protocol (red line). The response
was fitted by a power-law (white dashed line). (E) Results from stiffness measurements are of mean standard error: endothelial cells > keratinocytes
> fibroblasts. (F) Cell fluidity, that is, cellular dynamics (8-value) with mean SE of endothelial cells, keratinocytes, and fibroblasts. (G) Ramp protocol. A force
ramp was applied up to 40nN (red line) and the force at which the rupture event occurs, was detected (blue dot). (H) Fraction of detached beads versus
pulling force. The dashed line indicates the median rupture value for endothelial cells. (I) Median rupture force exerted from the cumulative rupture

distribution (Note that due to fibronectin-coated beads on EC, the cells are less adhesive). Errors were determined by a bootstrap method.

tracked on-line using an intensity-weighted center-of-mass
algorithm. Measurements on multiple beads per well are
normally performed at 37°C for 30 min, using a heated
microscope stage on an inverted microscope at 40x
magnification (NA 0.6) under bright-field illumination.
Magnetic tweezer microrheometry measures the cell
deformation in response to magnetically generated forces
(Kollmannsberger and Fabry, 2011), which are excerted on
extracellular matrix protein-coated superparamagnetic
beads attached to integrins (Fig. 2C). A creep protocol
(Fig. 2D) is applied, where the force is increased from zero to
a fixed value (typically 10nN) and held for some time
(typically t=1s) and then sharply decreases back to zero
again. The cell responds to this force application by a
deformation, which follows a power law (Kollmannsberger
and Fabry, 2007). This response can be described, using
J(t)=]o - (£ )%, from which the cell stiffness 1/J, and fluidity
can be obtained. Figures 2E and 2F show results from mouse
FB, KC, and EC. The stiffness 1/] is of the following order:
EC > KC > FB. EC show about tenfold higher stiffness than
FB and KC, indicating a higher baseline tension, since the
total cytoskeletal prestress is the sum of baseline prestress
and externally imposed stress (Kollmannsberger et al., 2011).
The fluidity describes spring-like (8=0) or dashpot-like
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(B=1) cellular response and gives insight of dynamic
processes of the cytoskeleton (Bursac et al., 2005).

To rule out that an increased number of detached cells
during pull are the result of poor matrix adhesion, an
increasing lateral force ramp protocol to integrin-coupled
magnetic beads up to 80nN is applied by a steel tip of the
tweezer. This approach allows to record the force, at which the
beads detach from the cells under certain bead-coating
conditions and to estimate the adhesion strength (Fig. 2G).
The force ramp up to 40 nN (greenline) and the force, at which
the rupture event occurs, was detected by the green dotted line
for EC (Fig. 2H). The fraction of beads that detached from FB
is lower than in KC and EC (Fig. 2I). Generally, when focal
adhesion contacts of adherent cells are stimulated by
external forces, they respond with restructuring and rein-
forcement of focal contacts, that is, focal adhesion strength-
ening (Choquet et al., 1997; Goldmann, 2002; Giannone et al.,
2003; Deng et al., 2004). A controlled generation of such forces
allows the study of dynamic processes in great detail.

Fourier transform traction microscopy
Adherent cells transfer forces onto the extracellular

matrix. When cells are cultured on a polyacrylamide
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Figure 3 Traction force microscopy. (A) A schematic diagram of the setup. Fluorescent beads are embedded in a polyacrylamide gel. The gel surface is
coated with extracellular matrix proteins of 1 mg/mL fibronectin (fibroblasts) or collagen-I (endothelial cells, keratinocytes). (B) The relaxed state of the cell
is achieved by the addition of cytochalasin D and trypsin. (C-E) A bright field and fluorescent image (i.e., red indicates the contracted and green the
relaxed states of the beads) as well as a traction image of a fibroblast. (F) Calculated strain energy normalized to the spreading area for FB = fibroblasts,

KC =kerationocytes, EC = endothelial cells. Error bars indicate SE.

elastic substrate, in which fluorescent markers (e.g.,
200 nm FluoSpheres) are embedded, forces can be made
visible (Butler et al., 2002; Stamenovic et al., 2002, 2004;
Deng et al., 2004). Depending on the elastic modulus of
the elastic substrate and the contractile state of the cells,
the fluorescent marker (bead) is displaced from the
resting position. From the measured deformation of the
elastic substrate, the size, orientation, and exact location
of the force field below the cell can be reconstructed at
sub-pixel precision using a Fourier-based algorithm
(Butler et al, 2002). The elastic properties of the
polyacrylamide substrate can be adjusted over a wide
range (100Pa to >50kPa) by precisely varying the
acrylamide/bisacrylamide cross-linker ratio and concen-
tration. The surface of the polyacrylamide gel is activated
with sulfosuccinimidyl 6 (4'-azido-2'-nitrophenyl-amino)
hexanoate (sulfo-SANPAH) and then covalently coated
with any extracellular matrix protein.

It has been possible to increase the resolution of the
deformation field of the elastic matrix to 10nm. In
contrast to previous methods, for the calculation of the
force field from traction microscopy, it is no longer
necessary to know the exact location of the adhesive
contacts or the outline of the cell (Dembo and Wang,
1999; Balaban et al., 2001; Butler et al., 2002). To obtain
such additional information is time-consuming. This
method allows the automatic calculation of the deforma-
tion and force field of the cell, which is free of potentially
bias decisions of the researcher with a significantly higher
throughput.

Here, traction measurements are performed on acryl-
amide/bisacrylamide gels (e.g., ratio 19:1 with a Young’s
modulus of 12.8kPa and thickness of 300 um) with
0.5um green fluorescent beads embedded at the top
surface (Pelham and Wang, 1998; Raupach et al., 2007).
Gels are then coated with extracellular matrix proteins at
4°C overnight. Cells are normally seeded on gels at a
density between 10 and 20,000 cells in a 35mm @ tissue
culture dish and incubated under normal growth
conditions (Fig. 3A). During measurements, the cells are
maintained at 37°C and 5% CO, in a humidified
atmosphere of 95%. Cell tractions are computed with an
unconstrained fast Fourier traction cytometry method
(Butler et al., 2002) and measured before and after the cells
are treated with a trypsin/cytochalasin D mix to relax the
traction forces (Fig. 3B). Figures 3C-3E display the
brightfield and fluorescence image as well a traction map
of an adherent cell from which the strain energy is
calculated (Fig. 3F).

The contractile forces (i.e., actomyosin apparatus) of
spread cells are predominantly transmitted to the ECM as
opposed to internal compression-bearing elements such as
microtubules (Wang et al., 2002). Contractile forces of cells
are characterized by the elastic strain energy stored in the
ECM. The strain energy of EC is, under extracellular
matrix conditions, slightly higher than KC, thus
much higher (about tenfold) compared to FB (Fig. 3F).
This finding supports observations of higher stiffness in
KC and EC compared to FB that indicate higher cell
motility.
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Conclusions

Measurements provided here using different methods give
direct mechanical evidence that the cytoskeleton has various
functions in cells. Note that different extracellular matrix
proteins used in the experiments described here activate
different integrins which might result in slightly varying
cellular adhesive forces. It remains, however, an open
question in what way cellular cytoskeletal restructuring and
reorganization processes are involved and trigger bio-
mechanical signaling. Meanwhile, a number of laboratories
have directed their research in elucidating the important
aspect of signal transduction using some of these techniques.
(For further reading, please refer to Eekhoff et al., 2011; Inoh
et al., 2002; Naruse et al., 1998; Pullarkat et al., 2007; Takeda
et al., 2006; Wang et al., 2005).
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