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Role of vinculin in cellular mechanotransduction
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Abstract

Cell-matrix adhesion and cell-cell contacts are essential for the metabolism, protein synthesis, survival, and cancer metastasis
of cells. Major transmembrane receptors are the integrins, which are responsible for cell-matrix adhesions, and the cadherins,
which are important for cell-cell adhesions. Adherent cells anchor via focal adhesion proteins to the extracellular matrix,
whereas cell-cell contacts connect via focal adherens junction proteins. The temporal formation of these connections is greatly
strengthened either through externally applied stresses on the cell or by myosin-driven cell contractility. The mechanism
by which protein(s) within these connections sense, transmit, and respond to mechanochemical signaling is currently strongly
debated and various candidates have been named. Vinculin has been described as one of the key players in cell-matrix and
cell-cell adhesions that build a strong physical connection for transmitting forces between the cytoskeleton, the extracellular
matrix, and cell-cell connections.
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History of vinculin

Vinculin was first identified and isolated by Geiger et al.
(1980) and soon after, it was discovered in a variety of
cells and tissues (Otto, 1986). The primary sequence of
this 116kDa protein was published for chicken, nematode,
and human species (Barstead and Waterston, 1989). The
organization of the entire human vinculin gene, including its
promoter sequence, was finally reported by Moiseyeva et al.
(1993). For many years, vinculin was assumed to be an actin-
binding protein and, indeed, the vinculin sequence contains
actin-binding sites that can be blocked by specific antibodies
(Isenberg et al., 1982; Ruhnau and Wegner, 1988; Ruddies
etal., 1993). The molecular shape of vinculin was at that time
described by the “balloon-on-a-string” model (Eimer et al.,
1993).

Vinculin is a typical amphitropic protein that is present
in the cell as a soluble cytoplasmic and a membrane-
bound protein. Its association with negatively charged

phospholipids (PA, PI, PG) has been reported; however,
neutral lipids (PC, PE) do not promote vinculin binding (Ito
et al., 1983; Niggli et al., 1986, 1994). Vinculin has also been
reconstituted into lipid monolayers (Goldmann et al., 1992).
This study reported a moderate dissociation constant for
vinculin-phospholipid interaction depending on tempera-
ture, surface pressure, different lipid compositions, and
ratios. At that time, it was not clear whether posttransla-
tional modification of vinculin was important for lipid
bilayer interactions. The degree of posttranslational lipid
modification was believed to be due to the phosphorylation
state. A significant increase in vinculin phosphorylation
induced by the purified src gene product (Ito et al., 1982,
1983) showed a markedly lower level of palmitylated
vinculin in Rous sarcoma virus-infected fibroblasts. Vincu-
lin was reported to be one of the rare examples for which
hydrophobic labeling by a lipid analog could be applied
(Gotter et al., 1995; Isenberg and Goldmann, 1995; Isenberg
et al., 1996).
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The vinculin molecule

The following binding partners of vinculin have been
reported: talin (Burridge and Mangeat, 1984), a-actinin
(Small, 1985), catenin o/f (Watabe-Uchida et al., 1998),
vinexin /P, c-Cbl-associated protein (CAP), nArgBP2
(Kawabe et al., 1999), vasodilator-stimulated phosphopro-
tein (VASP) (Huttelmaier et al., 1998), actin-related protein
complex (Arp2/3) (Higgs and Pollard, 2001), paxillin
(Wood et al,, 1994), Hic-5 (Thomas et al., 1999), F-actin
(Ruddies et al., 1993), PKC-a (Ziegler et al., 2002), synemin,
calpain (Liu and Schnellmann, 2003), polycystin-1 (Wilson
et al., 1999), raverl (Lee et al., 2008), phosphatidylinositol
(4,5)-biphosphate (PIP,) (Johnson et al.,, 1998), and lipid
membrane (Goldmann et al., 1995b, 1996; Tempel et al.,
1995; Diez et al., 2008, 2009). All of these binding partners
can also interact with other proteins that link vinculin to the
cellular signaling network (Zaidel-Bar et al., 2007). The
ligand-binding sites of these proteins on vinculin are hidden
by an intramolecular interaction between the vinculin head
and tail domains (Ziegler et al., 2006). The vinculin molecule
is believed to be in equilibrium between active and inactivate
states (Goldmann, 2010; Diez et al., 2011). In the activated
state, a-catenin, a-actinin, and talin can bind to the head
domain of vinculin (Vh), whereas actin, paxillin, and PIP,
associate with the tail domain of vinculin (Vt), and VASP,
Arp2/3, vinexin, as well as ponsin (Zamir and Geiger, 2001;
DeMali et al., 2002) bind to the flexible neck region.

Protein interactions with vinculin

Vinculin binding to F-actin

Previously, it was reported that vinculin associates with F-
actin on two regions in the tail (Goldmann and Guttenberg,
1998; Huttelmaier et al., 1998; Cohen et al., 2005, 2006).
Therefore, researchers suggested a model whereby actin
binding of vinculin may weaken the interaction between
the head and tail domain, allowing talin (in cell-matrix
interactions) or a-catenin (in cell-cell adhesions) to fully
bind to active vinculin (Janssen et al., 2006). It was proposed
from molecular dynamics studies that the D1 region of the
Vh stericly clashes with F-actin, preventing the linkage
between the Vt and F-actin (Golji and Mofrad, 2013). Results
showed that F-actin does not form a complex with vinculin
in the closed conformation, only in the open conformation
of vinculin. In the closed conformation, the charged residues
of the head are linked to the Vt. The binding interface of F-
actin was predicted near R1008 on the Vt. According to their
computer simulation work (Golji and Mofrad, 2013), the
open conformation of vinculin facilitates the binding of
vinculin with the actin filament by removing the steric
hindrance of the Vt-F-actin interaction. They could show
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that the Vt interacts favorably with F-actin when isolated
from the head region (DI1). Conformational changes
subsequently lead to the opening of the vinculin molecule.
They hypothesized that mechanical stresses transduced
through vinculin’s linkage with talin could enhance the
movement of the head from the tail (Vt).

Full-length vinculin can bind, nucleate, cap, and crosslink
F-actin (Jockusch and Isenberg, 1981; Goldmann and
Guttenberg, 1998; Le Clainche et al., 2010). Vinculin’s tail
residues, R1049 and T1050, are proposed to be involved in
dimer formation, suggesting that the D4 contacts in the head
domain are released from the Vt upon actin binding (Golji
and Mofrad, 2013). If, for instance, F-actin and the «-catenin
fragment (cell-cell contact) are simultaneously mixed with
full-length vinculin, the affinity of F-actin as well as a-
catenin for vinculin increases significantly. This finding
clearly indicates that vinculin’s actin binding activity is
enhanced by a-catenin, supporting the combinatorial input
hypothesis (Goldmann et al., 2013).

Detailed understanding of the association of vinculin with
F-actin is important for cellular mechanical stability. At focal
adhesions (FAs), the actin cytoskeletal network is connected
via integrins to the extracellular matrix (ECM). Forces
originating from within or from outside the cell can only be
mechanically re-enforced if the actin network is properly
coupled to FAs. Golji et al. (2011) predicted from their
computer simulation work that vinculin in maturing nascent
adhesions could facilitate the F-actin linkage when mechan-
ical stresses are present. During this process, the stress
around vinculin would increase, as well as activate the
molecule and by the same token intensify the linkage with
actin filament and strengthen FAs. Using state-of-the-art
techniques, Claire Waterman’s group recently showed that
FA maturation promotes vinculin activation and physical
reinforcement of FAs (Case et al., 2015).

Supporting evidence for this notion comes also from
studies elucidating the formation of an actin arc structure
(Mohl et al., 2009; Kiipper et al., 2010; Thievessen et al., 2013;
Thompson et al., 2014). Actin polymerization leads to cell
membrane protrusion, and rearward movement correlates
with the retraction of the cell membrane (Plotnikov et al.,
2012). During retrograde flow of the actin filaments, actin
filament slippage occurs (Kanchanawong et al., 2010). These
researchers interpret this event as integrin-FA disconnec-
tion, whereby vinculin stays connected which would allow
vinculin to bind to another FA structure, stopping the actin
flow. The slogan of vinculin acting as a molecular clutch was
termed (Thievessen et al., 2013; Case et al., 2015).

Vinculin reinforces FAs by crosslinking actin filaments
to the talin molecule. This is a critical step in cellular
mechanics linking the cell to its substrate. Vinculin binds
actin filaments to growing FAs and by capping them,
regulates actin dynamics (Le Clainche et al, 2010).
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Computer simulations of vinculin showed that it could cap
actin filaments by interacting with them in the open
conformation. Three binding sites on F-actin with vinculin
were proposed, and their interaction is dependent on
conformation and mechanical load according to Golji and
Mofrad (2010). A function for vinculin in regulating actin
dynamics has been proposed (Huveneers et al., 2012). Golji
and Mofrad (2013) tested this in molecular dynamics
simulations. They could show that cell migration, as well as
FA formation, is controlled by vinculin (Goldmann et al.,
1995a; Thievessen et al., 2015) and that vinculin-talin
interaction plays a key role in regulating FA formation
(Humpbhries et al., 2007).

Vinculin-actin interaction is important for the mechanics
of FAs. Janssen et al. (2006) investigated this and found that
basic residues on the surface of the vinculin tail match with
acidic residues of F-actin. It remained, however, unclear
whether the conformation of activated vinculin would be
capable of that. Recent studies indicate that the Vt can
inhibit actin polymerization when using a Shigella flexneri
effector, IpaA (Ramarao et al., 2007). It is assumed, when
using IpaA, actin polymerization is stopped by simulta-
neously activating vinculin tail’s capping activity of F-actin.
More evidence of Vt-capping activity comes from an in vitro
study by Le Clainche et al. (2010). They showed that residues
1044-1066 of the Vt are responsible for the capping of
F-actin by vinculin.

Vinculin binding to talin

Talin is believed to be important for vinculin’s localization to
FAs (Zhang et al., 2008). Its spherical head with an elongated
rod domain (Goldmann et al., 1994) is suitable for linking
integrin and the actin cytoskeleton. The head domain binds
B-integrin and F-actin and the rod domain have interaction
sites for F-actin and vinculin. Previously, PtdIns(4,5)P, and
actin were considered the preferred partners for talin as both
binding sites overlap (Gilmore and Burridge, 1996; Weekes
et al., 1996; Huttelmaier et al., 1998). Simultaneous binding
of both partners, however, is unlikely (Steimle et al., 1999).
Talin-vinculin association is of low affinity (Goldmann
etal., 1992) and only the presence of PtdIns(4,5)P, increases
its affinity significantly. Therefore, a two-step model of
vinculin activation was proposed: (i) binding of PtdIns(4,5)
P, weakens the interaction between the Vh and Vt and (ii)
locking vinculin in the open conformation allows the
binding of additional proteins such as F-actin.

Izard et al. (2004) demonstrated that talin-vinculin
interaction leads to conformational changes in the Vt and
that the Vh and a short talin peptide (e.g., VBS3) encompass
a single vinculin-binding site in the head region (D1).
Further binding sites for vinculin on talin are located in the
rod domain, which are believed to be activated under tension
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(Coll et al., 1995; Volberg et al., 1995; Galbraith et al., 2002;
Zaidel-Bar et al., 2003; Hytonen and Vogel, 2008). Indeed,
Galbraith et al. (2002) could show in traction force
experiments that vinculin is recruited in integrin-mediated
adhesions, and Del Rio et al. (2009) reported that stretching
of single talin rods exposed binding sites for vinculin. More
recently, Ciobanasu et al. (2014) confirmed that activation of
vinculin by stretched talin reinforces actin anchoring.
Therefore, force-dependent binding of vinculin to talin is
believed to facilitate F-actin binding to FAs in cells (Hirata
etal., 2014b). Moreover, Austen et al. (2015) addressed ECM
rigidity sensing of talin in the context of integrin, vinculin,
and F-actin. The association of talin with vinculin could
also influence a5B1-integrin clustering (Humphries et al.,
2007; Alonso and Goldmann, 2012). Together, all these
observations allowed for the view that FA dynamics is
probably regulated by integrin-ECM linkages when cross-
linked by talin and vinculin (Humphries et al., 2007).
Further, talin was reported to be the first protein that is
recruited to integrin clusters, that is, it provides a binding
site for vinculin, which subsequently triggers adhesion
maturation during cell spreading and assembly of FAs (Sen
et al.,, 2012).

Vinculin binding to a-actinin

A number of other binding partners for vinculin, including
a-actinin, have been suggested. Bois et al. (2006) showed
that talin and «-actinin bind the Vh (D1) of autoinhibited
vinculin and this binding can then lead directly to vinculin
activation. Simulations showed that vinculin binding sites
(VBS) from a-actinin and talin all bind vinculin (the Vh) by
the same mechanism. Simulation of VBS from a-actinin
by Lee et al. (2008), however, suggested that «-VBS binds
with an inverted orientation. Their results demonstrate a
significant difference between binding to lower-VBS and
upper-VBS. Therefore, the nature of a-actinin binding to
full-length vinculin might be a topic for future investigations
(Shams et al., 2012).

Previously, Izard et al. (2004) claimed that the binding of
a-actinin peptide can by itself displace the Vt from the
vinculin head effectively. Further, vinculin might also be
activated by a combinatorial mechanism (Ziegler et al., 2006;
Goldmann et al., 2013). This requires at least two binding
partners, the high-affinity VBS in talin and a-actinin.
Analysis of intensity profiles of a vinculin construct (aa
1-880, head) cotransfected with FAK showed differences
between vinculin and a-actinin. It is, therefore, assumed that
a-actinin does not have an important role in vinculin-
induced FA growth. More likely candidates are talin and
paxillin, but not FAK, a-actinin, or phosphotyrosine.
Meanwhile, several other research groups have also
investigated whether a-actinin directly links integrins to
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F-actin. It is believed that a-actinin competes with talin to
bind integrins, and thus triggering adhesion maturation
(Zaidel-Bar et al. 2003; Roca-Cusachs et al. 2013). More
recently, Case et al. (2015) described in their super-
resolution study that FAs are stratified vertically into three
layers and that vinculin is distributed between all of them.

Vinculin binding to paxillin

In the recruitment of paxillin to vinculin, tyrosine phos-
phorylation does not play a role in hypertrophic FAs.
However, when expressing Y31/118E phosphomimetic
paxillin, it rescued vinculin recruitment into focal complexes
and reduced FAK activity (Zaidel-Bar et al. 2003). In
vinculin knockout cells and mutants expressing the Vt
region (Y822F), the phosphorylation and FAK-paxillin
interaction were increased (Subauste et al., 2004). This
correlated with an upregulation of ERK activity, which
suppressed apoptosis. It was, therefore, assumed that the Vt
competes with FAK for paxillin binding regulating paxillin
phosphorylation (Subauste et al., 2004; Klemm et al., 2009,
2010). This was not mediated by enhanced FAK phosphor-
ylation but rather by p21-activated kinase (PAK) and MAP/
ERK kinase (MEK) upstream of ERK (Subauste et al., 2004).
Inhibition of ERK resensitized the vinculin-deficient cells to
apoptosis. On the other hand, phosphorylation of FAK on
Tyr397 and paxillin on Tyr118 was increased in cells lacking
vinculin, and a Vt polypeptide (residues 811-1066) sup-
pressed both phosphorylation of FAK and paxillin and
resensitized the vinculin-null cells to apoptotic stimuli
(Subauste et al., 2004). Recent observations showed that both
cell stiffness and FA-associated paxillin and vinculin
markedly and quickly change (Gomez et al,, 2011).

Vinculin binding to p130Cas

Several recent studies have shown that stretching of proteins
in vitro can produce a biochemical change either by un-
covering tyrosine phosphorylation sites in p130Cas (Janos-
tiak et al., 2011, 2014) or VBS in talin. Vinculin’s recruitment
is assumed to be mediated by paxillin phosphorylation (Saez
etal., 2004). Specifically, the phosphorylation of the p130Cas
substrate domain is important in stretch-dependent activa-
tion of GTPase Rapl. Local tension in focal adhesions
leads to an extension of p130Cas substrate domain, making
phosphorylation sites easily accessible for kinases, which
subsequently increases pl130Cas substrate domain phos-
phorylation. The anchorage of p130Cas in focal adhesions is
mediated by its C-terminal and SH3 domain, predominantly
through the interactions with vinculin as well as FAK
(Goldmann, 2014b). It is likely that each event enhances
the probability of activation and together lead to vinculin
activation (Sawada et al., 2006).
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Vinculin binding to phospholipids

In vinculin, the C-terminal arm binds to acidic phospho-
lipids (Scott et al., 2006; Diez et al., 2008, 2009; Wirth et al.,
2010) causing a conformational change in the tail that
potentially relieves inhibition by the head domain, which
may activate proteins such as talin. Biochemical evidence
from in vitro studies describe that talin or a-actinin, either as
a single binding component (Izard et al., 2004; Bois et al.,
2006) or together with PIP, or actin, are able to disrupt
the head-tail interaction and activate vinculin, which is
regarded as a “combinatorial model” (Gilmore and Burridge,
1996; Izard et al., 2004; Bois et al., 2006; Janssen et al., 2006).
Whether PIP, (Weekes et al., 1996; Huttelmaier et al., 1998)
or actin (Chen et al., 2006) is the preferred partner for talin
is still unknown. Steimle et al. (1999) believed that PIP, and
F-actin binding are mutually exclusive, thus Brown and
Izard (2015) recently reported that simultaneous binding of
PIP, and F-actin is structurally possible.

Vinculin activation

Phosphorylation of vinculin head/tail

Intramolecular interaction of vinculin’s head and tail
domains mask phosphorylation sites and their ability to
bind to target proteins. It is believed that phosphorylation of
vinculin is important for the mechanocoupling function of
vinculin (Subauste et al., 2004; Golji et al., 2012). Removing
the phosphorylation site at position Y822 resulted in
upregulation of p-ERK and in the reduction of cell migration
(Subauste et al., 2004; Peng et al., 2011). More recently, Bays
et al. (2014) reported that phosphorylation at Y822 is
only increased when forces are applied to cell-cell junctions
(E-cadherin), but not at cell-matrix adhesions, which points
to a regulatory function of Y822. Furthermore, c-src-
dependent vinculin phosphorylation at positions Y100
and Y1065 has been reported to affect cell spreading and
migration, indicating that the phosphorylation of vinculin
might stabilize the active/open conformation (Zhang et al.,
2004; Moese et al., 2007). The hypothesis of vinculin
activation by phosphorylation is not necessarily a competing
hypothesis to vinculin activation by a stretching force. It is,
therefore, conceivable that phosphorylation enhances the
ability of vinculin to be activated by a stretching force, or
perhaps a stretching force enhances the ability of vinculin to
be activated by phosphorylation.

The phosphorylation of vinculin contributes to vinculin
activation by enhancing the cooperative binding of actin and
talin to vinculin. Although mechanical stretch does not
affect integrin expression levels, it alters the intracellular
distribution and induces the phosphorylation of several FA
proteins, including paxillin, p130Cas, and FAK. Recently,

Cell Biol Int 40 (2016) 241-256 © 2015 International Federation for Cell Biology



W. H. Goldmann

Golji et al. (2012) proposed in a simulation study that pS1033
and pS1045 of vinculin at the interface between the tail
and head (D1) domains could impact its activation and
that phosphorylated vinculin requires less activating force
on D1. Auernheimer and Goldmann (2014a) confirmed that
force transmission is dependent on the phosphorylation of
vinculin at position S1033, and that vinculin must be in an
activated conformation incorporated into the FA complex to
transmit forces via the actin network.

Combinatorial activation of vinculin

In the autoinhibited full-length vinculin structure, F-actin
might act as part of a combinatorial input framework
together with other binding partners, such as o-catenin
(cell-cell contacts) or talin (FAs), to induce Vh-Vt
dissociation promoting vinculin activation (Goldmann
et al, 2013). The interaction between the head region
(D4) the Vt of vinculin plays an important role in regulating
binding between the Vh and talin (Cohen et al., 2005).
Interactions of full-length vinculin with a-catenin (Bakolitsa
et al., 1999), talin (Cohen et al., 2005), and IpaA, a protein
that binds to vinculin and competes with talin, are all weaker
than the respective interactions with the Vh. This implicates
that full head-tail dissociation does not generally occur due
to the binding of these ligands alone.

Because tryptophan fluorescence and increase of protease
sensitivity support a conformational change in the Vt upon
actin binding, an unfurling of the bundle was proposed as
part of the actin binding mechanism as well (Bakolitsa et al.,
1999). However, data are incompatible with unfurling of
the five-helix bundle upon actin binding and clearly show
that there are no large-scale changes upon binding. The
nature of the conformational change triggered by actin
binding is probably subtler, involving local rearrangements
in the strap and C-terminal loop regions.

One of the actin binding sites identified by Golji et al.
(2011) is partially occluded by Vt-Vh interactions in the
autoinhibited form, and steric hindrance between the Vh
domain D1 and F-actin prevent the second binding site to
make full contact with F-actin. The recombinant fragment
VD153, where the 153 residues of D1 are removed, does
not contain the residues that occlude one of the Vt’s actin
binding sites or the residues that would clash with F-actin
(Janssen et al., 2006; Golji et al.,, 2012; Auernheimer and
Goldmann, 2014b). Each of the two actin-binding surfaces
of the Vt contacts a different actin monomer along the
filament. The binding surface at the bottom of the helix
bundle, which is exposed in the autoinhibited form,
contacts a highly charged area on top of subdomain 1 of
actin. The combined body of data suggest that binding of
vinculin to F-actin potentiates dimerization not by trigger-
ing a large-scale conformational change in the Vt, such as
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bundle unfurling, but by presenting two monomers on
opposing filaments in the correct position and orientation.
The low-binding affinity of actin to full-length vinculin is
insufficient to trigger head-tail dissociation to fully expose
the occluded actin-binding site and to eliminate the steric
clashes of the actin filament and the N-terminal Vh residues
(Janssen et al., 2006). According to these authors, the steric
occlusion prevents the formation of a stable vinculin-
F-actin complex.

As vinculin lacks enzymatic activity and functions by
interacting with other proteins, it is important to understand
how the autoinhibited conformation is disrupted. From the
crystal structures and biochemical analyses, we know that
vinculin is held in the autoinhibited conformation by at least
two head-tail interfaces (Bakolitsa et al., 2004; Cohen et al.,
2005). Based on the fact that no vinculin ligand binds to full-
length vinculin with the same affinity as that of the head-tail
interaction (<1nM), it was proposed that two ligands are
required to disrupt both interfaces leading to vinculin
activation (Bakolitsa et al., 2004). To directly test this
hypothesis, Susan Craig’s laboratory applied the Foerster
resonance energy transfer (FRET) system that reports
vinculin conformational changes (Chen et al., 2005, 2006).
This system was extensively used to study conformational
changes in vinculin as well as to test the ability of talin to
activate vinculin. Neither the talin rod, which contains at
least three VBS, nor a short talin peptide containing a single
VBS induced a change in FRET signal (Chen et al., 2006).
These findings are consistent with the notion that two or
more ligands are required for vinculin activation. Indeed,
when F-actin was applied alongside either the talin rod or the
peptide, vinculin was activated in a dose-dependent manner
(Chen et al., 2006). These data support a mechanism
whereby at least two proteins, talin and F-actin, are required
to activate vinculin.

Vinculin activation by binding to talin

The interaction between talin and vinculin is a critical
cellular process that involves mechanotransduction and
mechanical interaction with the cellular environment via
FAs. First mechanistic evidence came from a biochemical
study that the bipartite autoinhibitory state of vinculin
(comprising of D1-Vt and D4-Vt contacts) masks the
binding site for talin (Cohen et al., 2005). Crystal structures
of vinculin in its inactive and talin-activated state proved
that talin induces a conformational change in the Vh
allowing for direct cytoskeletal assembly of vinculin in FAs
(Izard et al., 2004). More recently, Golji et al. (2011)
simulated the association by using talin’s VBS and vinculin’s
D1 before and after vinculin activation. They found that the
recruitment of talin and vinculin to FAs is directly correlated
with a mechanical stimulus applied to the site of FA
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formation. These results suggested a mechanical sensation
by talin and vinculin (Auernheimer et al., 2015).

These observations led to two specific assertions con-
cerning vinculin recruitment to FAs: (i) It is possible that
talin is not the only mechanosensor at FAs, but vinculin
might also be dependent on a mechanical environment for
its activation. Considering that the suggested mechanism
for vinculin activation is that actin and talin cooperatively
interact with vinculin to cause its activation, this proximity
of talin to vinculin by the weaker hydrophobic interaction
at the lower VBS could allow for vinculin activation. (ii)
Furthermore, phosphorylation of vinculin could also
contribute to vinculin activation by enhancing the coopera-
tive binding of actin and talin to vinculin. With D1 weakly
interacting with the lower VBS, an electrostatic interaction
between the Vt and actin could then stretch vinculin and
cause its activation. The stretching of vinculin could lead to a
conformational change in which D1 moves away from the Vt
and vinculin becomes activated. Next, talin’s VBS would be
able to fully insert into D1 to solidify and strengthen the
talin-vinculin link. The strengthening of the interaction
between vinculin and talin after vinculin activation allows
vinculin to take a larger mechanical load at FAs, reflecting its
role as a reinforcing agent. With vinculin activation by this
mechanism, it is possible that the number of actin filaments
linked to each talin rod can be multiplied via vinculin (Golji
and Mofrad, 2010; Golji et al., 2011).

Vinculin in FA formation

Vinculin interaction with talin clusters integrins in an active
form to induce FA enlargement, and its interaction with
talin and actin leads to FA growth (Humphries et al., 2007).
This interaction also drives the recruitment and release of
core FA components and regulates the transmission of
mechanical signals from the ECM (Carisey et al., 2013;
Hirata et al., 2014a). Talin is a key molecule regulating
integrin activation (Gingras et al., 2006, 2009). However,
Peng et al. (2011) proposed that vinculin activity may be the
important driving force for FA growth. It might, therefore,
be that active vinculin locks talin in FAs in an active
conformation, resulting in the growth of the adhesion site,
thus providing an ideal platform for the recruitment of other
FA components and a link to the actin cytoskeleton. Other
proteins, such as talin and paxillin, but not FAK, a-actinin,
or phosphotyrosine, correlated highly with localization of
vinculin in FAs, and their formation and enlargement.

Vinculin in diseased and cancer cells

Vinculin expression is commonly lost in cancer cells and
mutations in vinculin are linked to a variety of diseased
states such as cardiomyopathies. Efforts to better understand
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the role of vinculin have included the development of animal
models. This has confirmed and expanded our knowledge of
vinculin’s role in cell-cell and cell-matrix adhesions and has
underscored the importance of vinculin in vivo (Lifschitz-
Mercer et al., 1997; Somiari et al., 2003; Goldmann et al.,
2013).

The loss of vinculin leads to the disruption of cell adhesion
and cell migration, both of which are processes crucial for
embryonic development. Disrupting vinculin expression
causes cellular abnormalities. Xu et al. (1998) tested this
directly by deleting the vinculin gene in mice, which resulted
in lethality at embryonic day E10. Most prominent were
defects of the neural folds and head structures in the ventral
cranial midline as well as malformation of the heart. In the
vinculin null embryo, the heart is only about half the size of
the thin walls (Rodriguez Fernandez et al., 1992, 1993). All
these defects could potentially arise from improper cell-cell
and cell-matrix adhesion and actin remodeling.

In cardiac myocytes, vinculin is detected at the interca-
lated disks and costameres (Volk and Geiger, 1984). These
heart-specific structures are similar to cell-matrix adhesions
(Samarel, 2005). Costameres, like FAs, organize myofila-
ments into a three-dimensional structure and link them to
the ECM. These structures can transduce mechanical forces
across the cell membrane. Intercalated disks are similar to
adherens junctions, desmosomes, and gap junctions (Noor-
man et al., 2009). These structures are important for the
mechanical coupling of cardiac myocytes. Besides cadherin
and catenin in adherens junctions, vinculin is a major
component of the mechanical transduction system (Chen
et al., 2004). These findings demonstrate that vinculin is
essential for proper heart function, owing to its effects on
cell-cell adhesion in intercalated disks (Zemljic-Harpf et al.,
2004). More recently, an interesting study has been
performed to elucidate vinculin’s function on cytoskeletal
remodeling in an aging heart (Kaushik et al., 2015).

FAs in cellular mechanotransduction

Mechanotransduction in cells starts locally, but its effects are
transmitted globally in the cell via phosphorylation cascades
or diffusion of second messengers such as calcium ions that
activate complex signaling pathways (Goldmann, 2014a).
At FAs, mechanotransduction not only involves talin and
vinculin but also membrane-bound integrins (Goldmann
et al., 1996; Ezzell et al., 1997). The process of integrin
clustering at FAs can be force-induced, and the binding of
integrin to the ECM can be mechanosensitive. Results so far
come from simulations (Golji and Mofrad, 2010). Other
studies have assumed a talin conformation in which VBS is
rotated out of its hydrophobic groove in the rod domain
during VBS activation (Ziegler et al., 2008; Auernheimer
et al, 2015). It might also be possible that talin

Cell Biol Int 40 (2016) 241-256 © 2015 International Federation for Cell Biology



W. H. Goldmann

mechanosensation is the result of external stress (Golji et al.,
2011).

Vinculin recruitment to FAs

Talin has been proposed to be the protein that recruits vinculin
toFAsduetoitsearly engagement with integrin (Horwitzetal.,
1986). However, recent studies have shown that the vinculin
mutant, A50I, which blocks talin binding, is also able to
localize to FAs, leaving the question of how vinculin is
recruited unanswered (Bakolitsa etal., 2004; Cohen et al., 2006;
Humphries et al., 2007; Diez et al., 2011; Peng et al., 2011).
Some evidence suggests that paxillin may be responsible for
this recruitment via its ability to bind both integrins and
vinculin directly. According to Pasapera et al. (2010), nascent
adhesions are bound to talin and paxillin and an increase in
myosin-mediated FAK phosphorylation results in elevated
paxillin phosphorylation, and phosphorylated paxillin then
promotes vinculin recruitment to the adhesion site.

Vinculin’s involvement in force transmission pathways

Integrin, talin, and vinculin are directly involved in
mechanotransduction (Goldmann, 2002, 2010, 2012). Talin
and vinculin are among the numerous FA proteins that
link the cytoplasmic domains of integrin subunits to F-actin
filaments (Goldmann et al., 1995, Goldmann and Gutten-
berg, 1998). Vinculin binding to talin stabilizes the
talin-integrin complex, locking integrins in an active
conformation, and increased stability of talin in active
vinculin-containing FAs has been observed (Dumbauld
et al,, 2013). A model in which tension-activated vinculin
stabilizes the talin-integrin complexleading to enforcement of
integrin adhesion and stabilization of integrin-proximal
proteins of FAs has been proposed by (Puklin-Faucher and
Sheetz, 2009). Using a FRET probe to measure mechanical
tension across single molecules it was reported that vinculin is
under ~2.5pN of tension in vivo when reinforcing FAs. It is
likely that this tension stretches vinculin to a conformation
similar to the one tested by (Grashoff et al., 2010). Further,
vinculin has been reported to control the intra- and
extracellular transmission of mechanical cues that are
important for the reorganization of FAs (Carisey et al,
2013), and Chang and Kumar (2013) reported on vinculin
tension distribution of individual stress within cell-matrix
adhesions. More recently, Hernandez-Varas et al. (2015)
investigated vinculin-mediated tension and adhesion complex
area demonstrating a plastic, context-dependent relationship.

Vinculin, ECM, integrin, and forces

The fibronectin receptors and integrins establish initial
adhesion between the cell and the ECM. Talin and vinculin
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are transiently recruited to the adhesion to reinforce integrin
binding to form a structural link between the ECM and
the actin cytoskeleton. This results in cellular stiffening and
requires both actomyosin integrity and cellular contractility
(Faull and Ginsberg, 1995).

In vitro, cellular level forces can stretch adhesion proteins
that link the ECM to the actin cytoskeleton, exposing hidden
binding sites. There is, however, little direct evidence that in
vivo forces produce significant in vivo stretching to cause
domain unfolding (Sawada et al., 2006; Janostiak et al.,
2014). It has been reported that talin is repeatedly stretched
by 100-350 nm in vivo by actomyosin contraction (talin’s in
vitro length is only between 50 nm and 60 nm) (Goldmann
et al., 1994).

FA formation and mechanotransduction

Phosphorylation of vinculin also contributes to vinculin
activation by enhancing the cooperative binding of actin
and talin to vinculin (Golji et al., 2012; Auernheimer and
Goldmann, 2014a; Auernheimer et al., 2015). With vinculin
activation in this way, it might be possible that the number of
actin filaments linked to each talin rod can be crosslinked via
vinculin. In force-induced FA formation, as the load on the
developing focal complex increases, one would expect more
vinculin activation and recruitment of activated vinculin
to crosslink talin and actin filaments. Golji et al. (2011)
investigated the interaction of activated vinculin with talin.
It was suggested that electrostatic forces might be important
for driving the binding of vinculin to actin.

Many other actin regulatory proteins are also recruited to
punctate adhesions, which include vinculin, zyxin, ena/
VASP, formins, and Arp2/3 proteins (Kovacs et al., 2002).
They are likely to control the extent of F-actin polymeriza-
tion at these sites. In addition, Rho-asociated protein kinase
(ROCK) signaling is required to form punctate adhesions. A
study by Hu et al. (2007) showed that integrins and proteins,
such as paxillin, zyxin, and FAK, without direct interaction
sites for actin have a low correlation with actin flow. Other
FA proteins, such as a-actinin, also influence the flow of
actin. This points to different molecular hierarchies of the
actomyosin force machinery (Kanchanawong et al., 2010;
Thievessen et al., 2013; Giannone, 2015). According to
Hemmings et al. (1996) and Lee et al. (2004), talin colocalizes
precisely with vinculin in FAs, but this is not an effective link
to F-actin. Therefore, vinculin might act as a principle
connector of the FA core to actin filaments and as a major
transmitter of forces (Goldmann and Ingber, 2002). A
vinculin mutation (A50I) inhibited talin binding and the
FA growth-promoting activity as well as force generating
activity were lost (Cohen et al., 2006; Diez et al., 2011).
Cohen et al. (2006) examined the dynamic effect of active
vinculin on other proteins localized in FAs. Reduced
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mobility of vinculin affected the turnover rate of talin and
integrins in FAs.

It has been proposed that the Vh and Vt regions of
vinculin have distinct functions, that is, the Vh is involved in
talin binding and subsequent cellular actin binding, whereas
the Vt influences the coupling with the mechanotransduc-
tion force machinery. According to Mohl et al. (2009),
nascent adhesions form first and as the mechanical stress
intensifies, the talin molecules become activated for
interaction with vinculin. This results in vinculin changing
from its closed to its open conformation with complete
binding of F-actin and talin as well as dramatic FA growth
(Hu et al., 2007). The complete activation of vinculin gives
direct access of talin and «-actinin to the head; ponsin,
vinexin, VASP, and Arp2/3 to the neck; and actin, PIP,, and
paxillin to the tail (Zamir and Geiger, 2001; Ziegler et al.,
2006; Goldmann et al., 2013). More recently, Auernheimer
et al. (2015) showed that the phosphorylation of vinculin is
an essential step for the binding to talin and FA formation.

Various research groups proposed several steps of
vinculin activation in cellular mechanotransduction: (i)
low-affinity binding to talin or neck-binding proteins to
focal complexes (Chen et al., 2005), (ii) possible association
with PIP, or actin (Huttelmaier et al., 1998; Bakolitsa et al.,
1999, 2004; Chen and Dokholyan, 2006; Janssen et al., 2006),
(iii) when activated, rapid adhesion complex turnover, and
(iv) conformational change of vinculin leads to stabilization
of vinculin-talin-integrin binding in FAs. A recent report
revealed that PIP2 binding to vinculin is necessary for
maintaining FAs, actin organization, cell migration, and
spreading (Chinthalapudi et al., 2014).

Focal adherens junctions (FAJs) in cellular
mechanotransduction

Role of vinculin in FAJs

Vinculin is an integral part of adherens junctions in various
tissues and has been the focus of various researchers (Bloch
and Hall, 1983; Koteliansky and Gneushev, 1983; Pardo
et al., 1983; Drenckhahn and Franz, 1986). Their efforts
have uncovered three roles for vinculin: (i) vinculin acts
downstream of myosin VI, a minus end-directed motor
necessary for the E-cadherin-dependent process of border-
cell migration (Maddugoda et al, 2007), (ii) vinculin
regulates E-cadherin surface expression in cadherin-based
adhesion (Peng et al., 2009), and (iii) vinculin plays a role in
the mechanosensory response of E-cadherin (Le Duc et al.,
2010). The responses require the contractile actin cytoskele-
ton. Cells lacking vinculin showed a significant reduction in
stiffness and exhibited a dramatic decrease in the recruit-
ment of phosphorylated myosin light chains (MLCs) to cell-
cell junctions when stimulated with a cell growth factor.
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Further, a-catenin binding to vinculin was reported to be
dependent upon myosin activity by Yonemura et al. (2010).

Vinculin is not required for the assembly of cadherin-
mediated cell-cell junctions; however, it is believed to
strengthen the mechanical links between adhesion com-
plexes (containing E-cadherin, B-catenin, and a-catenin)
and the actin cytoskeleton. A force-dependent increase in
actin polymerization at cell-cell junctions might serve
to counteract the pulling force that is exerted by contractile
F-actin. It remains to be elucidated which of these
possible events is indeed elicited by an increase in tension
at cell-cell junctions and thus contributes to cadherin
mechanotransduction.

Vinculin recruitment to adherens junctions

Vinculin recruitment to adherens junctions is still contro-
versial. a-Catenin is required for vinculin recruitment and
localization to intercellular junctions according to Watabe-
Uchida et al. (1998) and Sheikh et al. (2006). Myosin VI
has also been implicated in vinculin recruitment to cell-
cell junctions. Specifically, myosin VI is necessary for the
incorporation of vinculin into stable cadherin-containing
adhesions (Sheikh et al., 2006).

FA]J formation and mechanotransduction

Cell-cell adhesions are sites where cells experience and resist
tugging forces that may serve in mechanotransduction. Le
Duc et al. (2010) provided direct evidence that E-cadherin
participates in a mechanosensing pathway that regulates
the actomyosin cytoskeleton to modulate cell stiffness in
response to pulling forces. Further, these authors demon-
strated that cellular stiffening in response to twisting force is
reduced in vinculin-deficient cells. As «-catenin/Eplin
(epithelial protein lost in neoplasm) bind vinculin directly
(Le Ducetal., 2010; Yonemura et al., 2010; Peng et al., 2012),
it was proposed that force transmission to a-catenin/Eplin
might alter its conformation. Thus, vinculin might not be the
sole mediator of the cytoskeletal response in controlling
actin filament dynamics and organization.

FAs and FAJs exhibit many striking similarities (Figures 1a
and 1b). Both (i) consist of a cluster of transmembrane
receptors, (ii) provide a highly dynamic mechanical link to
the actin cytoskeleton, and (iii) consists of a large number of
signaling and structural molecules that cluster at the junction
through multiple, redundant protein—protein interactions
(Nagafuchi et al, 1991). We and others have pointed out
that there must be a link between FAs and FAJs controlling
cellular behavior (Lauffenburger and Wells, 2001; Lange et al.,
2013). For instance, increasing cell-cell adhesion mechani-
cally competes with and decreases cell-substrate adhesion
(Lauffenburger and Wells, 2001) and leads to selective
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reinforcement of FAs and FAJs (Levenberg et al., 1998). Thus,
the extent to which this interplay results from the redistribu-
tion of cytoskeletal tension is unknown.

It has also been reported that cadherin-mediated cell-cell
contacts decrease cell-ECM adhesion. Chen and his group
could show that cadherin-mediated cell-cell contact affects
cell-ECM adhesion (Legant et al., 2012), using a lithographic
method. They could show by preventing contact inhibition
of cell spreading, cadherin-mediated cell-cell contact no
longer inhibited proliferation, but acted as a stimulatory
signal for cell proliferation in vascular cells. These results
imply that FAJs can generate two opposing signals that
affect cell proliferation (McCain et al.,, 2012; Mertz et al.,
2012). Recently, Huveneers et al. (2012) reported that
vinculin protects the force-dependent remodeling of FAJs.
However, the open question of how FAs, FAJs, ECM,
integrins, and cell-cell adhesion molecules interact still
remains.
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Key members of the cadherin—adhesion complex

In adherens junctions, the major cell-surface adhesion
receptors are the cadherins (Niessen and Gottardi, 2008;
Ogita et al., 2008). The extracellular domains of cadherins
mediate strong cell-cell adhesion by binding to cadherins on
adjacent cells. The cytoplasmic tail of cadherin interacts with
several proteins, including (3-catenin (via the distal portion
of the cadherin cytoplasmic tail) and p120-catenin (via a
more proximal region of the cadherin cytoplasmic tail (Perez
and Sanderson, 2005). B-catenin in turn binds a-catenin,
and both B-catenin/Eplin bind to vinculin (Figure 1).

All evidence to date suggests that vinculin is required to
maintain the integrity of adherens junctions. The first hint of
vinculin’s importance came from the observation that cell-
cell adhesion is lost in numerous cancer cells during the
initial stages of tumor formation (Lifschitz-Mercer et al.,
1997; Somiari et al., 2003). Later it was found that defects in
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mice lacking vinculin were consistent with a role for vinculin
in regulating adherens junction function. Vinculin’s affinity
for cell-matrix adhesions, where only small amounts of
vinculin are needed to maintain adhesion, is higher than its
affinity for cell-cell adhesions (Xu et al., 1998; Bakolitsa
et al., 2004; Bays et al., 2014).

Vinculin is a coactivator of aE-catenin and its binding
to aE-catenin has been described to be force-dependent at
cell-cell contacts. Under low-stress conditions, an inhibitory
region of aE-catenin blocks the VBS. Upon F-actin binding
to the C-terminus of aE-catenin and subsequent actomyosin
contraction, this inhibitory region is displaced and vinculin
is able to bind (Maiden et al., 2013). The C-terminus of
a-catenin modulates the F-actin binding. Interactions
between a-catenin and the actin cytoskeleton occur through
both direct and indirect mechanisms, depending on the
cellular context. Modeling studies demonstrated that
conformational changes in the whole protein are not
sufficient to affect actin binding.

The N-terminal domain of «-catenin is accessible and its
central domain recruits vinculin and probably a-actinin
through force-dependent changes of its conformation
(Maiden et al., 2013). This correlates with the discovery
that an increasing number of actin-associated proteins,
such as a-actinin, formin, and Ajuba, are able to associate
with a-catenin. a-Catenin alters its conformation under
tension to allow recruitment of vinculin to reinforce cell-cell
adhesions (Yonemura et al., 2010; Huveneers et al., 2012).
The recruitment of vinculin upon stretching of a-catenin
could strengthen cell-cell adhesion by providing additional
bonds between the cadherin complex and F-actin. The
binding of a-catenin to the Vh enhances the binding of
the Vt to F-actin (Choi et al., 2012; Peng et al., 2012; Bays
et al., 2014). This has also been shown for many factors that
bind to the Vh (Ziegler et al., 2006). By placing vinculin into
the force chain between F-actin and cadherin, any tension
across the cadherin-F-actin linkage could affect its confor-
mation. Further, bundling of F-actin to the cadherin
complex could reinforce cell-cell adhesion. Vinculin might
also bring other factors to cadherin adhesions, such as the
VASP (Brindle et al., 1996) and ponsin (Kioka et al., 1999;
Mandai et al., 1999), as well as the Arp2/3 complex, (DeMali
et al., 2002; Tang et al., 2012) to regulate F-actin remodeling.
Moreover, there is evidence that vinculin itself is an actin
nucleator (Ruddies et al., 1992; Le Clainche et al., 2010; Wen
and Janmey, 2011). The force-regulated domain of a-catenin
can also bind to a-actinin and its tail domain to Eplin, which
is somehow regulated by myosin activity (Taguchi et al.,
2011). Finally, the actin nucleator formin-1 also binds to the
D3 domain of a-catenin (Vasioukhin and Fuchs, 2001) and
might contribute to force-induced actin-polymerization at
cell-cell junctions. For a-catenin, there is also evidence for
an allosteric regulation of its actin-binding activity (Drees
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et al., 2005), as well as for its vinculin-binding activity
(Yonemura et al., 2010; Choi et al., 2012).

Forces at the zonula adherens (ZA) and FA]J
are different

Adhesive structures form different connections to F-actin
(Yonemura et al, 2010). The localization of Eplin and
vinculin to the ZA is indirectly induced by myosin II activity
through a stabilization of F-actin at cell-cell junctions
(Shewan et al., 2005), whereas the localization of vinculin at
and the exclusion of Eplin from FAJs is directly regulated by
force through its concomitant deformation of a-catenin.
The exact mechanisms that recruit vinculin and Eplin to
the distinct junction structures are still unclear, and
might involve both recruitment by force-induced changes
in a-catenin and changes in the F-actin cytoskeleton. The
question of the links between the cadherin complex and
actin cytoskeleton is more complex than previously
envisioned because a-catenin is a multimodular molecule
that undergoes, under the action of mechanical strengths,
conformational changes unmasking cryptic ligand binding
sites. A model exists in which Eplin primarily connects
the vascular-endothelial (VE)-cadherin-catenin complex
to F-actin by interacting with the closed conformation of
a-catenin. When forces are applied by the actin filament-
Eplin network, a-catenin adopts a stretched conformation,
unmasking a cryptic binding domain for vinculin. Depend-
ing on the tension amplitude exerted by the cytoskeleton,
variable amounts of vinculin are recruited to cell-cell
junctions.

Interplay between cell-cell and cell-matrix interaction

Cell adhesions are important for many morphogenic
processes, including cell sorting, cell rearrangement, and
cell movement (Gumbiner, 2005). It is, therefore, not
surprising that the disruption of cell adhesion components
occurs in numerous diseased states. As described above,
the loss of vinculin leads to the disruption of cell adhesion
and cell migration, both of which are processes crucial to
embryonic development.

The global vinculin knockout provides key insights into
vinculin function and suggests that vinculin plays a crucial
role in heart function. The heart-specific structures are similar
to cell-matrix adhesions and circumferentially align with the
Z disk of the myofibrils (Samarel, 2005). They share many
components of FAs, which include integrins, talin, vinculin,
a-actinin, and FAK. These structures connect neighboring
myocytes in a staggered fashion and are important for the
mechanical and electrical coupling of cardiac myocytes.
Vinculin’s expression is upregulated in response to loading,
and its localization in costameres is disrupted upon the
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unloading of mechanic force (Sharp et al., 1997). Although
vinculin knockout mice appear healthy initially, 50% died
suddenly before reaching 14 weeks of age due to ventricular
tachycardia and disruptions in electrical conductance
(Zemljic-Harpf et al., 2007). An analysis of tissues harvested
prior to the loss of ventricular function showed highly
serrated intercalated disks that were detached from the
myofibrils (Zemljic-Harpf et al., 2007). The disruptions in
intercalated disks arose from a loss of cadherin at this site, a
phenomenon that is recapitulated in epithelial cells in which
vinculin expression is silenced (Peng et al., 2009).

Conclusions

Mechanical forces are essential for the organization, growth,
maturation, and function of living tissues. At the cellular
level, many of the biological responses to external forces
originate from specialized microscale structures. Force
transduction through cell-matrix (FAs) and cell-cell
contacts (FAJs) controls the maturation or assembly/
disassembly of these adhesions and triggers intracellular
signaling cascades that influence cellular behaviors. Upon
force application, many cell types actively rearrange the
organization of the contractile apparatus.

What the integrin receptors accomplish as mechanosen-
sors/transducers between the ECM and the actomyosin
cytoskeleton, cadherin complexes may do at cell-cell
junctions. To date, the exact molecular composition of the
link between cadherin and actin is not completely resolved.
However, in recent years, researchers have addressed the
question of how «-catenin bridges E-cadherin-catenin
complexes to the actin cytoskeleton. It is now believed that
the protein Eplin establishes a link between the cadherin-f3-
catenin complex and actin, which acts as a mechanotrans-
mitter (Peng et al., 2012). Thus, colocalization of Eplin and
vinculin appears restricted to areas where cell-cell junctions
are mature. The mechanism of mechanosensing/transduction
at E-cadherin junctions may differ from integrin-dependent
force sensing/transduction. More recent findings broadly
implicate E-cadherin as playing a central role in the
development and maintenance of epithelial tissues.
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