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The advancement of techniques to measure nano- to
piconewton forces has found a natural arena in Life
Sciences in recent years. Countless biological processes
have been examined, from DNA replication to protein–
protein interaction, and many others (Clausen-
Schaumann et al., 2000; Vinckier et al., 1998; Weisel
et al., 2003). Commonly used techniques employed in
these measurements are atomic force microscopy (AFM)
and optical tweezers. More recently, biological re-
searchers have tailored the application of these tech-
niques to address questions of folding and refolding
forces of single molecules and to measure the rupture
force of molecular adhesion (Grubmueller et al., 1996;
Rief et al., 1997). Forces for single molecules to unfold
using AFM, like individual domains of titin, ranged
from 150–300 piconewton depending on the pulling
speed (Rief et al., 1997), whilst the rupture force, e.g. of
a fibronectin–integrin complex, using AFM and laser
tweezers was on average between 80–120 piconewton (Li
et al., 2003; Litvinov et al., 2002). Recent structural
analyses of �v�3-integrin have shed more light on how it
interacts with fibronectin (Xiong et al., 2001), and how
internal, as well as external, forces act on cells (Xiong
et al., 2003). The research interest of many laboratories
has focused on how the mechanical link between in-
tegrins, membrane-associated proteins like talin, and the
actin cytoskeleton mediates signal and force transduc-
tion across the plasma membrane (Garcia-Alvarez et al.,
2003; Von Wichert et al., 2003; Zhang et al., 2002).

Past experimental data have shown that talin serves
as a key protein linking the cytoskeleton to the extracel-
lular matrix (Isenberg and Goldmann, 1992). The bind-
ing of talin to actin has independently been reported by

two groups (Kaufmann et al., 1991; Muguruma et al.,
1990), and stopped flow measurements indicated ‘on’
and ‘off’ rates of 7�106 M�1 s�1 and 2–3 s�1, respect-
ively (Goldmann and Isenberg, 1991), which are similar
to integrin binding to talin and fibronectin (Goldmann,
2000). From the biochemical point of view, these kinetic
data reflect average strong and stable binding, which
cannot be broken by an externally applied force of only
1–2 piconewton, as recently reported by Jiang et al.
(2003), when the rupture of the fibronectin–integrin
complex requires much higher forces.

To explain the findings of Jiang et al. (2003), one has
to consider that talin not only binds to actin as a
dumbbell-shaped, 51 nm long, flexible homodimer
(Goldmann et al., 1994) whose subunits are arranged in
an antiparallel fashion, but also inserts into the hydro-
phobic region of lipid membranes, allowing the pro-
motion of actin filament assembly proximal to the
membrane (Kaufmann et al., 1992). A competent
sequence domain for membrane-anchoring, amino acids
385–406 just preceding the calpain cleavage site, has
been identified, and it has been demonstrated that this
peptide folds into a five-loop �-helix in the presence of
lipid vesicles prior to binding to lipid bilayers (Seelig
et al., 2000). The strongly amphipathic �-helix (H17) has
been resolved by crystal structure of the talin head
portion (Garcia-Alvarez et al., 2003), and competitive
binding of �3-integrin cytodomain and PIP2-kinase
to the same segment has recently been demonstrated
(Barsukov et al., 2003). The binding of H17 to lipid
bilayers most likely occurs in an oblique orientation
(Isenberg et al., 2002), with one site facing the mem-
brane, leaving the other, more charged half for integrin
and PIP2-kinase binding. Binding of the helical peptide
alone to lipid bilayers was measured, rendering a par-
tition coefficient of between 6.2�103 and 1.2�104 M�1,
depending on concentration (Seelig et al., 2000). This
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relatively weak affinity, competent for transient interac-
tions with phospholipid bilayers, may well be disturbed
by 1–2 piconewton forces, which seems more plausible
to us. Or are the forces simply the result of thermal noise
in the system?

In conclusion, more detailed experimental work needs
to be carried out in order to understand the complex
nature of integrin-membrane-associated proteins like
talin, vinculin, filamin (ABP-280), alpha-actinin and the
actin cytoskeleton with regard to bi-directional force
transmission and biochemical signaling.
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