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Actin: A molecular wire, an electrical cable?

Filamentous (F)-actin is an example of a biological macro-
molecule that is a polyelectrolyte which, under physiological
pH ranges, accumulates solvated counter ions in its vicinity
to balance locally exposed surface charges. F-actin is a major
component of the cytoskeleton in cells and is made up of actin
monomers bound by specific self-assembling sites to form
double-helical filaments (Goldmann et al., 2005). Each subunit
of the actin filament contains high-affinity divalent cation
binding sites that are usually occupied in the cytosolic milieu
by Mg*" and Ca®" ions. Saturation of these binding sites is,
however, insufficient to promote actin polymerization which
is driven by millimolar concentration of monovalent ions. It
has been reported that from conformations of the sequence
of muscle actin, each monomer subunit exposes roughly 11
excess negative charges with an average charge spacing of
2 A in its polymerized tertiary structure (Tang and Janmey,
1996). This value is less than the charge spacing of 1.7A
for DNA, suggesting that although F-actin is not as highly
charged as DNA, the phenomenon of counter ion condensation
is still possible. Evidence of polyelectrolyte behavior has been
shown in the formation of para-crystalline bundles of F-actin
by divalent and polyvalent cations, and it has been reported
(Lin and Cantiello, 1993; Xian et al., 1999) that the general
features are analogous to the condensation of DNA (Bloom-
field, 1991). Over the years, several theories have been devel-
oped based on the cylindrical-rod cell model in its primitive
form. The assumption is that the charges are distributed
uniformly along the length of the polyelectrolyte. The counter
ion condensation theory of Manning (Manning, 1978) has
provided a very useful quantitative description of the key fea-
tures of polyelectrolyte counter ion interactions.

Since actin filaments are closely associated with a variety of
ion channels (cf. Janmey, 1998) that can be viewed in this con-
text as cellular electric current generators, it has been assumed
that ion channel—actin interfaces may be part of a novel electro-
dynamic signaling mechanism based on the ability of actin
filaments to conduct electrical signals (Chasan et al., 2002;
Cantiello et al., 2005). This electrical interface may influence
the ionic composition and generate electrical signals to couple
the associated actin networks. It has, therefore, been suggested
that electrical signals generated at membrane interfaces, for ex-
ample by ion channel activity, may be transduced by intracellu-
lar structures, such as F-actin or indeed microtubule networks,

acting as novel intracellular conductors (Janmey, 1998; Tuszyn-
ski et al., 2004). It is exciting to imagine these conductors as
having a potential signal transduction role. For this to occur,
a tight interaction between ion transport proteins and actin
filaments would have to exist in the cytoskeleton of most cells.
Some studies have already demonstrated that, for instance, the
spectrin cytoskeleton containing ankyrin and actin is structur-
ally linked to ion transport proteins including the band 3
anion exchanger (Drenckhahn et al., 1985) and the Na™, K*-
ATPase (Nelson and Veshnock, 1987). Studies by Dr. Cantiel-
lo’s group have indicated that actin filaments might also control
ion channel activity (Cantiello et al., 1991, 2005; Raychowd-
hury et al., 2004).

Thus, a functional interface between the ion transport
molecules and the underlying cytoskeleton may be indicative
of a dynamic mechanism whereby cell membrane generated
signals could be conducted directly to intracellular compart-
ments. It is known that intracellular electrical currents play
a relevant role in cell and organizational development
(Manning, 1978; Jaffe, 1981). However, the nature and
specific location of intracellular, electrically preferred, con-
ductive pathways in the intracellular milieu are still unknown.
It is conceivable that conduction by electrically stimulated
actin filaments may serve as a novel signaling mechanism to
convey intracellular information regarding the ionic extracel-
lular environment. Experiments have indicated that actin fila-
ment organization can be modified by electric fields (Luther
et al., 1983) and that cells respond to electric fields (Onuma
and Hui, 1988). This idea is based on the assumption that actin
filaments may behave as biological cables and that actin
filaments are closely associated with a variety of ion channels.
To further understand this mechanism, ion channel activity can
be envisioned as that of ‘electric current generators’ capable of
generating discrete ion currents that couple to the associated
actin filaments.

To directly evaluate the biological relevance of information
processing along microtubles in solution, Cantiello et al. have
recently modified their dual ‘patch-clamp’ device to measure
locally, longitudinally generated electrical signals (Priel
et al., 2006). The conductance determined from these mea-
surements was of the order of up to 9 nS. In first experiments,
we used atomic force microscopy (AFM, with an adapted mul-
timode head) on polymerized actin deposited on graphite at
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ambient temperature. After fluid evaporation, the conductance
measured vertically through the actin filaments in point con-
tact mode with a standard silicon cantilever covered with plat-
inum was about 6 pS. The topology of actin filaments was
captured by tapping mode using a standard silicon cantilever
and a tip consisting of WCQOg. [About 15 puM G-actin was
polymerized in 5 mM Tris—HCI (pH 7.5), 2 mM MgCl,, 100
mM KCI, 1 mM DTT and 1 mM ATP for 30 min at ambient
temperature and 30 pM phalloidin was added to stabilize
F-actin. A droplet of 10 pl F-actin was then deposited on the
graphite surface and AFM measurements were conducted after
complete fluid evaporation in tapping and point contact mode.
A current of up to 1.5 V was applied to the platinum tip which
was grounded via an ampere meter.]

Although the AFM values are much smaller compared to
those generated for microtubles by the patch clamp method
(which might be due to the nature of the molecules, presence
of electrolytes, charge changes during polymerization, etc.),
they are still intriguing in that microtubles as well as F-actin
may act as a molecular wire, i.e. electrical cable. Further
research efforts from biologists and physicists alike are needed
to quantify electrically induced ionic currents by microtubles
as well as F-actin and to initiate investigations of the func-
tional relevance of such signals in a biological context in
different environments. The ability of microtubles, F-actin
and possibly DNA to support ionic waves may prove a novel
intracellular signaling mechanism.
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